DGtal  1.4.2
StandardDSLQ0.ih
1 /**
2  * This program is free software: you can redistribute it and/or modify
3  * it under the terms of the GNU Lesser General Public License as
4  * published by the Free Software Foundation, either version 3 of the
5  * License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program. If not, see <http://www.gnu.org/licenses/>.
14  *
15  **/
16 
17 /**
18  * @file StandardDSLQ0.ih
19  * @author Jacques-Olivier Lachaud (\c jacques-olivier.lachaud@univ-savoie.fr )
20  * Laboratory of Mathematics (CNRS, UMR 5127), University of Savoie, France
21  *
22  * @date 2012/03/08
23  *
24  * Implementation of inline methods defined in StandardDSLQ0.h
25  *
26  * This file is part of the DGtal library.
27  */
28 
29 
30 //////////////////////////////////////////////////////////////////////////////
31 #include <cstdlib>
32 //////////////////////////////////////////////////////////////////////////////
33 
34 ///////////////////////////////////////////////////////////////////////////////
35 // IMPLEMENTATION of inline methods.
36 ///////////////////////////////////////////////////////////////////////////////
37 
38 ///////////////////////////////////////////////////////////////////////////////
39 // ----------------------- Standard services ------------------------------
40 
41 
42 
43 
44 //-----------------------------------------------------------------------------
45 template <typename TFraction>
46 inline
47 DGtal::StandardDSLQ0<TFraction>::
48 ~StandardDSLQ0()
49 {
50 }
51 //-----------------------------------------------------------------------------
52 template <typename TFraction>
53 inline
54 DGtal::StandardDSLQ0<TFraction>::
55 StandardDSLQ0()
56  : myPattern()
57 {
58 }
59 //-----------------------------------------------------------------------------
60 template <typename TFraction>
61 inline
62 DGtal::StandardDSLQ0<TFraction>::
63 StandardDSLQ0 ( const Self & other )
64  : myPattern( other.myPattern ), myMu( other.myMu )
65 {
66 }
67 //-----------------------------------------------------------------------------
68 template <typename TFraction>
69 inline
70 DGtal::StandardDSLQ0<TFraction> &
71 DGtal::StandardDSLQ0<TFraction>::
72 operator= ( const Self & other )
73 {
74  myPattern = other.myPattern;
75  myMu = other.myMu;
76  return *this;
77 }
78 //-----------------------------------------------------------------------------
79 template <typename TFraction>
80 inline
81 DGtal::StandardDSLQ0<TFraction>::
82 StandardDSLQ0( Fraction aSlope, IntegerParamType aMu )
83  : myPattern( aSlope ), myMu( aMu )
84 {
85 }
86 //-----------------------------------------------------------------------------
87 template <typename TFraction>
88 inline
89 DGtal::StandardDSLQ0<TFraction>::
90 StandardDSLQ0( IntegerParamType a1, IntegerParamType b1, IntegerParamType mu1 )
91  : myPattern( a1, b1 ), myMu( mu1 )
92 {
93 }
94 //-----------------------------------------------------------------------------
95 template <typename TFraction>
96 inline
97 bool
98 DGtal::StandardDSLQ0<TFraction>::
99 operator()( const Point & p ) const
100 {
101  if ( slope().null() ) return false;
102  Integer _r = r( p );
103  return ( mu() <= _r ) && ( _r < ( mu() + pattern().length() ) );
104 }
105 //-----------------------------------------------------------------------------
106 template <typename TFraction>
107 inline
108 typename DGtal::StandardDSLQ0<TFraction>::Integer
109 DGtal::StandardDSLQ0<TFraction>::
110 r( const Point & p ) const
111 {
112  ASSERT( ! slope().null() );
113  return a() * p[ 0 ] - b() * p[ 1 ];
114 }
115 //-----------------------------------------------------------------------------
116 template <typename TFraction>
117 inline
118 typename DGtal::StandardDSLQ0<TFraction>::Fraction
119 DGtal::StandardDSLQ0<TFraction>::
120 slope() const
121 {
122  return pattern().slope();
123 }
124 //-----------------------------------------------------------------------------
125 template <typename TFraction>
126 inline
127 const DGtal::Pattern<TFraction> &
128 DGtal::StandardDSLQ0<TFraction>::
129 pattern() const
130 {
131  return myPattern;
132 }
133 //-----------------------------------------------------------------------------
134 template <typename TFraction>
135 inline
136 const typename DGtal::StandardDSLQ0<TFraction>::Integer &
137 DGtal::StandardDSLQ0<TFraction>::
138 mu() const
139 {
140  return myMu;
141 }
142 //-----------------------------------------------------------------------------
143 template <typename TFraction>
144 inline
145 typename DGtal::StandardDSLQ0<TFraction>::Integer
146 DGtal::StandardDSLQ0<TFraction>::
147 mup() const
148 {
149  return myMu + pattern().length() - NumberTraits<Integer>::ONE;
150 }
151 //-----------------------------------------------------------------------------
152 template <typename TFraction>
153 inline
154 typename DGtal::StandardDSLQ0<TFraction>::Integer
155 DGtal::StandardDSLQ0<TFraction>::
156 a() const
157 {
158  return slope().p();
159 }
160 //-----------------------------------------------------------------------------
161 template <typename TFraction>
162 inline
163 typename DGtal::StandardDSLQ0<TFraction>::Integer
164 DGtal::StandardDSLQ0<TFraction>::
165 b() const
166 {
167  return slope().q();
168 }
169 //-----------------------------------------------------------------------------
170 template <typename TFraction>
171 inline
172 typename DGtal::StandardDSLQ0<TFraction>::Vector2I
173 DGtal::StandardDSLQ0<TFraction>::
174 v() const
175 {
176  return pattern().v();
177 }
178 //-----------------------------------------------------------------------------
179 template <typename TFraction>
180 inline
181 typename DGtal::StandardDSLQ0<TFraction>::Point
182 DGtal::StandardDSLQ0<TFraction>::
183 U() const
184 {
185  Vector2I u = pattern().bezout();
186  Integer c = ( mu() * u[ 0 ] ) / b();
187  return Point( mu() > NumberTraits<Integer>::ZERO
188  ? v() * ( c + 1 ) - u * mu()
189  : u * mu() - v() * c );
190 }
191 //-----------------------------------------------------------------------------
192 template <typename TFraction>
193 inline
194 typename DGtal::StandardDSLQ0<TFraction>::Point
195 DGtal::StandardDSLQ0<TFraction>::
196 L() const
197 {
198  return Point( U() + pattern().L( NumberTraits<Quotient>::ZERO ) );
199 }
200 //-----------------------------------------------------------------------------
201 template <typename TFraction>
202 inline
203 typename DGtal::StandardDSLQ0<TFraction>::Point
204 DGtal::StandardDSLQ0<TFraction>::
205 lowestY( IntegerParamType x ) const
206 {
207  Integer q = a() * x - mup();
208  return Point( x, ic.ceilDiv( q, b() ) );
209 }
210 //-----------------------------------------------------------------------------
211 template <typename TFraction>
212 inline
213 typename DGtal::StandardDSLQ0<TFraction>::Point
214 DGtal::StandardDSLQ0<TFraction>::
215 uppermostY( IntegerParamType x ) const
216 {
217  Integer q = a() * x - mu();
218  return Point( x, ic.floorDiv( q, b() ) );
219 }
220 //-----------------------------------------------------------------------------
221 template <typename TFraction>
222 inline
223 typename DGtal::StandardDSLQ0<TFraction>::Point
224 DGtal::StandardDSLQ0<TFraction>::
225 lowestX( IntegerParamType y ) const
226 {
227  Integer q = mu() + b() * y;
228  return Point( ic.ceilDiv( q, a() ), y );
229 }
230 //-----------------------------------------------------------------------------
231 template <typename TFraction>
232 inline
233 typename DGtal::StandardDSLQ0<TFraction>::Point
234 DGtal::StandardDSLQ0<TFraction>::
235 uppermostX( IntegerParamType y ) const
236 {
237  Integer q = mup() + b() * y;
238  return Point( ic.floorDiv( q, a() ), y );
239 }
240 //-----------------------------------------------------------------------------
241 template <typename TFraction>
242 inline
243 bool
244 DGtal::StandardDSLQ0<TFraction>::
245 before( const Point & p1, const Point & p2 ) const
246 {
247  return ( p1[ 0 ] < p2[ 0 ] )
248  || ( ( p1[ 0 ] == p2[ 0 ] ) && ( p1[ 1 ] < p2[ 1 ] ) );
249 }
250 //-----------------------------------------------------------------------------
251 template <typename TFraction>
252 inline
253 bool
254 DGtal::StandardDSLQ0<TFraction>::
255 beforeOrEqual( const Point & p1, const Point & p2 ) const
256 {
257  return ( p1[ 0 ] < p2[ 0 ] )
258  || ( ( p1[ 0 ] == p2[ 0 ] ) && ( p1[ 1 ] <= p2[ 1 ] ) );
259 }
260 //-----------------------------------------------------------------------------
261 template <typename TFraction>
262 typename DGtal::StandardDSLQ0<TFraction>::ConstIterator
263 DGtal::StandardDSLQ0<TFraction>::
264 begin( Point p ) const
265 {
266  return ConstIterator( *this, p );
267 }
268 //-----------------------------------------------------------------------------
269 template <typename TFraction>
270 typename DGtal::StandardDSLQ0<TFraction>::ConstIterator
271 DGtal::StandardDSLQ0<TFraction>::
272 end( Point p ) const
273 {
274  ConstIterator it( *this, p );
275  return ++it;
276 }
277 
278 //-----------------------------------------------------------------------------
279 template <typename TFraction>
280 typename DGtal::StandardDSLQ0<TFraction>::Self
281 DGtal::StandardDSLQ0<TFraction>::
282 reversedSmartDSS( const Point & A, const Point & B ) const
283 {
284  Point _U = U();
285  Integer cA = ic.floorDiv( A[ 0 ] - _U[ 0 ], v()[ 0 ] );
286  Point U1 = _U + v() * cA;
287  Integer cB = ic.ceilDiv( B[ 0 ] - _U[ 0 ], v()[ 0 ] );
288  Point U2 = _U + v() * cB;
289  if ( before( A, U1 ) ) U1 -= v();
290  if ( before( U2, B ) ) U2 += v();
291  return reversedSmartDSS( U1, U2, A, B );
292 }
293 
294 //-----------------------------------------------------------------------------
295 template <typename TFraction>
296 typename DGtal::StandardDSLQ0<TFraction>::Self
297 DGtal::StandardDSLQ0<TFraction>::
298 reversedSmartDSS( Point U1, Point U2,
299  const Point & A, const Point & B ) const
300 {
301  #ifdef TRACE_DSL
302  std::cerr << "[reversedSmartDSS] " << (*this)
303  << " " << pattern().rE() << std::endl
304  << " +- U1=" << U1 << " A=" << A
305  << " B=" << B << " U2=" << U2 << std::endl
306  << " v()=" << pattern().v()
307  << " u()=" << pattern().bezout()
308  << " r(U())=" << r(U())
309  << " mu=" << mu() << " r(U1)=" << r(U1)
310  << " r(U2)=" << r(U2)
311  << " r(A)=" << r(A)
312  << " r(B)=" << r(B)
313  << " mup=" << mup()
314  << " DSS(A)=" << this->operator()( A )
315  << " DSS(B)=" << this->operator()( B ) << std::endl;
316  #endif
317  ASSERT( ! slope().null() );
318  ASSERT( r( U1 ) == mu() && r( U2 ) == mu()
319  && this->operator()( A ) && this->operator()( B ) );
320  ASSERT( beforeOrEqual( U1, A ) );
321  ASSERT( before( A, B ) );
322  ASSERT( beforeOrEqual( B, U2 ) );
323  if ( A[ 0 ] == B[ 0 ] ) return Self( 1, 0, A[ 0 ] );
324  if ( A[ 1 ] == B[ 1 ] ) return Self( 0, 1, -A[ 1 ] );
325  Integer dU = U2[ 0 ] - U1[ 0 ];
326  ASSERT( dU >= b() );
327 #ifdef TRACE_DSL
328  std::cerr << " +- dU=" << dU << std::endl;
329 #endif
330  if ( ( dU >= (3*b()) )
331  || ( ( dU == (2*b()) ) && ( A == U1 || B == U2 ) )
332  || ( A == U1 && B == U2 ) )
333  {
334 #ifdef TRACE_DSL
335  std::cerr << "[reversedSmartDSS] 3 patterns || ..." << std::endl;
336 #endif
337  return *this;
338  }
339  // [A,B] is included in two patterns of this DSL.
340  if ( dU == (2*b()) )
341  {
342 #ifdef TRACE_DSL
343  std::cerr << "[reversedSmartDSS] 2 patterns" << std::endl;
344 #endif
345  return DSSWithinTwoPatterns( U1, U2, A, B );
346  }
347  // [A,B] is included in one patterns of this DSL.
348  Pattern<Fraction> subpattern;
349  Quotient nb;
350  Vector2I startPos;
351  Integer posA = ( A - U1 ).norm1();
352  Integer posB = ( B - U1 ).norm1();
353 #ifdef TRACE_DSL
354  std::cerr << "[reversedSmartDSS] 1 pattern" << std::endl;
355 #endif
356  bool m = pattern().getSmallestCoveringSubpattern
357  ( subpattern, nb, startPos, posA, posB );
358 #ifdef TRACE_DSL
359  std::cerr << " - smallest:" << subpattern.rE() << " at " << startPos << endl;
360 #endif
361  if ( ! m )
362  { // smallest covering subpattern is the pattern itself.
363  bool n = pattern().getGreatestIncludedSubpattern
364  ( subpattern, nb, startPos, posA, posB );
365 #ifdef TRACE_DSL
366  std::cerr << " - greatest:" << subpattern.rE() << " at " << startPos << endl;
367 #endif
368  ASSERT( n ); boost::ignore_unused_variable_warning(n);
369  Point NU( U1 + startPos );
370  Integer nmu = subpattern.slope().p() * NU[ 0 ]
371  - subpattern.slope().q() * NU[ 1 ];
372  return Self( subpattern.slope(), nmu );
373  }
374  // last case, recursive call.
375  Point NU1( U1 + startPos );
376  Point NU2( NU1 + subpattern.v()*nb );
377  Integer nmu = subpattern.slope().p() * NU1[ 0 ]
378  - subpattern.slope().q() * NU1[ 1 ];
379  StandardDSLQ0 ndsl( subpattern.slope(), nmu );
380  return ndsl.reversedSmartDSS( NU1, NU2, A, B );
381 }
382 //-----------------------------------------------------------------------------
383 template <typename TFraction>
384 typename DGtal::StandardDSLQ0<TFraction>::Self
385 DGtal::StandardDSLQ0<TFraction>::
386 DSSWithinTwoPatterns( Point U1, Point U2,
387  const Point & A, const Point & B ) const
388 {
389  Integer posA, posB;
390  Point Um = U1 + pattern().v();
391  ASSERT( Um + pattern().v() == U2 );
392  ASSERT( before( A, B ) );
393  ASSERT( before( A, Um ) );
394  ASSERT( before( Um, B ) );
395  ASSERT( r( U1 ) == mu() && r( U2 ) == mu() );
396  bool readyLU = false;
397  bool readyRU = false;
398  bool readyL = false;
399  Point L1 = U1 + pattern().L( 0 );
400  Point L2 = L1 + pattern().v();
401  Pattern<Fraction> subpattern;
402  Pattern<Fraction> patDeepest;
403  Pattern<Fraction> patLU = pattern();
404  Pattern<Fraction> patRU = pattern();
405  Pattern<Fraction> patL = pattern();
406  Quotient nb;
407  Vector2I startPos;
408  #ifdef TRACE_DSL
409  std::cerr << "[DSSWithinTwoPatterns] " << (*this)
410  << " " << pattern().rE() << std::endl
411  << " +- U1=" << U1 << " A=" << A
412  << " B=" << B << " U2=" << U2
413  << " L1=" << L1 << std::endl;
414  #endif
415  while( true ) //for ( Quotient i = NumberTraits<Quotient>::ZERO; i <= pattern().slope().k(); ++i )
416  {
417  if ( ! readyLU )
418  {
419  bool mLU = patLU.getSmallestCoveringSubpattern
420  ( subpattern, nb, startPos,
421  ( A - U1 ).norm1(), ( Um - U1 ).norm1(), false );
422  if ( ! mLU || nb > 1 )
423  {
424  bool n = patLU.getGreatestIncludedSubpattern
425  ( subpattern, nb, startPos,
426  ( A - U1 ).norm1(), ( Um - U1 ).norm1(), false );
427  ASSERT( n ); boost::ignore_unused_variable_warning(n);
428  readyLU = true;
429  }
430  patLU = subpattern;
431  U1 += startPos;
432  }
433  if ( ! readyRU )
434  {
435  bool mRU = patRU.getSmallestCoveringSubpattern
436  ( subpattern, nb, startPos,
437  0, ( B - Um ).norm1(), false );
438  if ( ! mRU || nb > 1 )
439  {
440  bool n = patRU.getGreatestIncludedSubpattern
441  ( subpattern, nb, startPos,
442  0, ( B - Um ).norm1(), false );
443  ASSERT( n ); boost::ignore_unused_variable_warning(n);
444  readyRU = true;
445  }
446  patRU = subpattern;
447  ASSERT( ! patRU.slope().null() );
448  U2 = Um + patRU.v() * nb;
449  }
450  if ( ! readyL )
451  {
452  posA = L1[ 0 ] <= A[ 0 ] ? ( A - L1 ).norm1() : 0;
453  posB = L2[ 0 ] > B[ 0 ] ? ( B - L1 ).norm1() : patL.length();
454  bool mL = patL.getSmallestCoveringSubpattern
455  ( subpattern, nb, startPos, posA, posB, true );
456  if ( ! mL )
457  {
458  bool n = patL.getGreatestIncludedSubpattern
459  ( subpattern, nb, startPos, posA, posB, true );
460  ASSERT( n ); boost::ignore_unused_variable_warning(n);
461  patL = subpattern;
462  readyL = true;
463  }
464  else
465  { // One has to keep the pertinent pattern
466  // It is the reversed pattern around Um.
467  patL = subpattern;
468  L2 = Um + patL.L( 0 );
469  L1 = L2 - patL.v();
470  }
471  // patL = subpattern;
472  // L1 += startPos;
473  // L2 = L1 + patL.v() * nb;
474  }
475 #ifdef TRACE_DSL
476  std::cerr << " (*) " << (readyLU ? '*' : '-')
477  << "LU=" << patLU.rE() << " at " << U1 << std::endl;
478  std::cerr << " (*) " << (readyRU ? '*' : '-')
479  << "RU=" << patRU.rE() << " til " << U2 << std::endl;
480  std::cerr << " (*) " << (readyL ? '*' : '-')
481  << "L =" << patL.rE() << " at " << L1 << std::endl;
482 #endif
483  if ( readyLU || readyRU || readyL )
484  {
485  patDeepest = deepest( patLU.slope(), patRU.slope(), patL.slope() );
486 #ifdef TRACE_DSL
487  std::cerr << " => deepest is " << patDeepest.rE() << std::endl;
488 #endif
489  }
490  if ( ( readyLU && patDeepest.slope().q() == patLU.slope().q() )
491  || ( readyRU && patDeepest.slope().q() == patRU.slope().q() )
492  || ( readyL && patDeepest.slope().q() == patL.slope().q() ) )
493  break;
494  }
495  Integer nmu = patDeepest.slope().p() * Um[ 0 ]
496  - patDeepest.slope().q() * Um[ 1 ];
497  return StandardDSLQ0( patDeepest.slope(), nmu );
498 }
499 //-----------------------------------------------------------------------------
500 template <typename TFraction>
501 typename DGtal::StandardDSLQ0<TFraction>::Self
502 DGtal::StandardDSLQ0<TFraction>::
503 smartDSS( const Point & A, const Point & B ) const
504 {
505 #ifdef TRACE_DSL
506  std::cerr << "[smartDSS] " << (*this)
507  << " " << pattern().rE() << std::endl
508  << " A=" << A << " B=" << B << std::endl;
509 #endif
510  ASSERT( ! slope().null() );
511  ASSERT( this->operator()( A ) && this->operator()( B ) );
512  ASSERT( before( A, B ) );
513  Fraction f10( 1, 0 );
514  Pattern<Fraction> p( 0, 1 );
515  bool ulu = true;
516  bool lul = true;
517  Quotient delta = 0;
518  Point2I _U = A;
519  Point2I _L = A;
520  Point2I _Up = _U + Point2I(0,1);
521  Point2I _Lp = _L + Point2I(1,-1);
522  UnsignedInteger AB1 = (B-A).norm1();
523  while ( ( (_Up - A).norm1() <= AB1 )
524  && this->operator()( _Up ) )
525  {
526 #ifdef TRACE_DSL
527  std::cerr << "Vertical" << std::endl;
528 #endif
529  p = Pattern<Fraction>( f10 );
530  _Up += Point2I(0,1);
531  _Lp += Point2I(0,1);
532  ++delta;
533  }
534  if ( delta != 0 )
535  {
536  _Lp += Point2I(0,1);
537  // ulu = false;
538  }
539 
540  while ( p.slope() != this->slope() )
541  {
542 #ifdef TRACE_DSL
543  std::cerr << "[smartDSS] v=" << p.v()
544  << " bez=" << p.bezout()
545  << " U=(" << _U[0] << "," << _U[1] << ")"
546  << " L=(" << _L[0] << "," << _L[1] << ")"
547  << " Up=(" << _Up[0] << "," << _Up[1] << ")"
548  << " Lp=(" << _Lp[0] << "," << _Lp[1] << ")"
549  << std::endl;
550 #endif
551  ASSERT( p.v()[1]*p.bezout()[0] - p.v()[0]*p.bezout()[1] == -1 );
552  if ( ( (_Up - A).norm1() > AB1 ) && ( (_Lp - A).norm1() > AB1 ) ) break;
553  else if ( _Up[ 1 ] <= B[ 1 ] && this->operator()( _Up ) )
554  {
555  Fraction np = p.slope().right();
556  for ( Quotient i = 1; i < delta; ++i )
557  np = np.left();
558  _L = _Lp + p.bezout() - p.v();
559  if ( ! lul ) _L -= p.v();
560  p = Pattern<Fraction>( np );
561  ASSERT( p.v()[1]*p.bezout()[0] - p.v()[0]*p.bezout()[1] == -1 );
562  _Up = _U + p.v() + p.bezout();
563  _Lp = _L + p.v() + p.v() - p.bezout();
564  delta = 1; ulu = true; lul = false;
565  }
566  else if ( _Lp[ 0 ] <= B[ 0 ] && this->operator()( _Lp ) )
567  {
568  Fraction np = p.slope().left();
569  for ( Quotient i = 1; i < delta; ++i )
570  np = np.right();
571  _U = p.slope() == f10 ? _Up - Point2I( 0,1 ) : _Up - p.bezout();
572  if ( ! ulu ) _U -= p.v();
573  p = Pattern<Fraction>( np );
574  ASSERT( p.v()[1]*p.bezout()[0] - p.v()[0]*p.bezout()[1] == -1 );
575  _Up = _U + p.v() + p.bezout();
576  _Lp = _L + p.v() + p.v() - p.bezout();
577  delta = 1; ulu = false; lul = true;
578  }
579  else
580  {
581  ++delta;
582  _Up += p.v();
583  _Lp += p.v();
584  }
585  }
586  Integer nmu = p.slope().p() * _U[ 0 ] - p.slope().q() * _U[ 1 ];
587  return StandardDSLQ0( p.slope(), nmu );
588 }
589 
590 //-----------------------------------------------------------------------------
591 template <typename TFraction>
592 inline
593 typename DGtal::StandardDSLQ0<TFraction>::Fraction
594 DGtal::StandardDSLQ0<TFraction>::
595 deepest( Fraction f1, Fraction f2, Fraction f3 )
596 {
597  return deepest( f1, deepest( f2, f3 ) );
598 }
599 //-----------------------------------------------------------------------------
600 template <typename TFraction>
601 inline
602 typename DGtal::StandardDSLQ0<TFraction>::Fraction
603 DGtal::StandardDSLQ0<TFraction>::
604 deepest( Fraction f1, Fraction f2 )
605 {
606  return ( ( f1.k() > f2.k() )
607  || ( ( f1.k() == f2.k() ) && ( f1.u() >= f2.u() ) ) )
608  ? f1 : f2;
609 }
610 
611 ///////////////////////////////////////////////////////////////////////////////
612 // Interface - public :
613 
614 /**
615  * Writes/Displays the object on an output stream.
616  * @param out the output stream where the object is written.
617  */
618 template <typename TFraction>
619 inline
620 void
621 DGtal::StandardDSLQ0<TFraction>::selfDisplay ( std::ostream & out ) const
622 {
623  out << "[StandardDSLQ0"
624  << " a=" << a() << ", b=" << b() << ", mu=" << mu() << "]";
625 }
626 
627 /**
628  * Checks the validity/consistency of the object.
629  * @return 'true' if the object is valid, 'false' otherwise.
630  */
631 template <typename TFraction>
632 inline
633 bool
634 DGtal::StandardDSLQ0<TFraction>::isValid() const
635 {
636  return true;
637 }
638 
639 
640 
641 ///////////////////////////////////////////////////////////////////////////////
642 // Implementation of inline functions //
643 
644 template <typename TFraction>
645 inline
646 std::ostream&
647 DGtal::operator<< ( std::ostream & out,
648  const StandardDSLQ0<TFraction> & object )
649 {
650  object.selfDisplay( out );
651  return out;
652 }
653 
654 // //
655 ///////////////////////////////////////////////////////////////////////////////
656 
657