DGtal 2.1.0
Loading...
Searching...
No Matches
DGtal::Xe_kComputer< n, Ring, Alloc > Class Template Reference

#include <DGtal/math/MPolynomial.h>

Public Member Functions

 Xe_kComputer ()
 
MPolynomial< n, Ring, Alloc > get (unsigned int k, unsigned int e)
 

Detailed Description

template<int n, typename Ring, typename Alloc>
class DGtal::Xe_kComputer< n, Ring, Alloc >

Creates a monomial X_k^e

Template Parameters
nthe number of indetermionates.
Ringthe type for the coefficent ring of the polynomial.
Allocthe type of allocator.

Definition at line 1618 of file MPolynomial.h.

Constructor & Destructor Documentation

◆ Xe_kComputer()

template<int n, typename Ring , typename Alloc >
DGtal::Xe_kComputer< n, Ring, Alloc >::Xe_kComputer ( )
inline

Definition at line 1621 of file MPolynomial.h.

1621{}

Member Function Documentation

◆ get()

template<int n, typename Ring , typename Alloc >
MPolynomial< n, Ring, Alloc > DGtal::Xe_kComputer< n, Ring, Alloc >::get ( unsigned int  k,
unsigned int  e 
)
inline
Parameters
kthe index of the variable (X_k)
ethe exponent for X_k
Returns
the 1-variable polynomial X_0^e

Definition at line 1629 of file MPolynomial.h.

1630 {
1631 MPolynomial<n, Ring, Alloc> p;
1632 if ( k == 0 )
1633 p[e] = Xe_kComputer<n-1,Ring,Alloc>().get( k-1, e );
1634 else
1635 p[0] = Xe_kComputer<n-1,Ring,Alloc>().get( k-1, e );
1636 p.normalize();
1637 //std::cerr << "Xe_k(" << k << "," << e << ")=" << p << std::endl;
1638 return p;
1639 }
MPolynomial< n, Ring, Alloc > get(unsigned int k, unsigned int e)
RealPointT::Coordinate Ring

References DGtal::Xe_kComputer< n, Ring, Alloc >::get(), and DGtal::MPolynomial< n, TRing, TAlloc >::normalize().

Referenced by DGtal::Xe_kComputer< n, Ring, Alloc >::get(), and DGtal::Xe_k().


The documentation for this class was generated from the following file: