DGtal  1.4.beta
standardDigitalPolyhedronBuilder3D.cpp
Go to the documentation of this file.
1
30 namespace DGtal {
61 } // namespace DGtal {
62
64 #include <iostream>
65 #include <queue>
66 #include "DGtal/base/Common.h"
67 #include "DGtal/helpers/StdDefs.h"
68 #include "DGtal/io/viewers/Viewer3D.h"
69 #include "DGtal/shapes/Shapes.h"
70 #include "DGtal/shapes/SurfaceMesh.h"
72 #include "DGtal/geometry/volumes/DigitalConvexity.h"
73 #include "ConfigExamples.h"
74
76
77 using namespace std;
78 using namespace DGtal;
79 typedef Z3i::Space Space;
83 typedef Z3i::SCell SCell;
88 typedef std::vector<Point> PointRange;
89
90 // Convenient class to represent different types of arithmetic planes as a predicate.
91 template < bool Naive, bool Symmetric >
92 struct MedianPlane {
93  Vector N;
94  Integer mu;
95  Integer omega;
96  MedianPlane() = default;
97  MedianPlane( const MedianPlane& other ) = default;
98  MedianPlane( MedianPlane&& other ) = default;
99  MedianPlane& operator=( const MedianPlane& other ) = default;
100  MedianPlane& operator=( MedianPlane&& other ) = default;
101  MedianPlane( Point p, Point q, Point r )
102  : N ( ( q - p ).crossProduct( r - p ) )
103  {
104  mu = N.dot( p );
105  omega = Naive ? N.norm( N.L_infty ) : N.norm( N.L_1 );
106  if ( Symmetric && ( ( omega & 1 ) == 0 ) ) omega += 1;
107  mu -= omega / 2;
108  }
109  bool operator()( const Point& p ) const
110  {
111  auto r = N.dot( p );
112  return ( mu <= r ) && ( r < mu+omega );
113  }
114 };
115
116 // Choose your plane !
117 // typedef MedianPlane< true, false > Plane; //< Naive, thinnest possible
118 // typedef MedianPlane< true, true > Plane; //< Naive, Symmetric
119 // typedef MedianPlane< false, false > Plane; //< Standard
120 typedef MedianPlane< false, true > Plane; //< Standard, Symmetric, thickest here
121
122 int main( int argc, char** argv )
123 {
124  trace.info() << "Usage: " << argv[ 0 ] << " <input.obj> <h> <view>" << std::endl;
125  trace.info() << "\tComputes a digital polyhedron from an OBJ file" << std::endl;
126  trace.info() << "\t- input.obj: choose your favorite mesh" << std::endl;
127  trace.info() << "\t- h [==1]: the digitization gridstep" << std::endl;
128  trace.info() << "\t- view [==31]: display vertices(1), common edges(2), positive side f edges(4), negative side f edges (8), faces(16)" << std::endl;
129  string filename = examplesPath + "samples/lion.obj";
130  std::string fn = argc > 1 ? argv[ 1 ] : filename; //< vol filename
131  double h = argc > 2 ? atof( argv[ 2 ] ) : 1.0;
132  int view = argc > 3 ? atoi( argv[ 3 ] ) : 31;
134  std::ifstream input( fn.c_str() );
137  if ( ! ok )
138  {
139  trace.error() << "Unable to read obj file : " << fn << std::endl;
140  return 1;
141  }
142
143  QApplication application(argc,argv);
144  typedef Viewer3D<Space,KSpace> MViewer;
145  MViewer viewer;
146  viewer.setWindowTitle("standardDigitalPolyhedronBuilder3D");
147  viewer.show();
148
149  Point lo(-500,-500,-500);
150  Point up(500,500,500);
151  DigitalConvexity< KSpace > dconv( lo, up );
153
154  auto vertices = std::vector<Point>( surfmesh.nbVertices() );
155  for ( auto v : surfmesh )
156  {
157  RealPoint p = (1.0 / h) * surfmesh.position( v );
158  Point q ( (Integer) round( p[ 0 ] ),
159  (Integer) round( p[ 1 ] ),
160  (Integer) round( p[ 2 ] ) );
161  vertices[ v ] = q;
162  }
163  std::set< Point > faces_set, pos_edges_set, neg_edges_set;
164  auto faceVertices = surfmesh.allIncidentVertices();
165
166  trace.beginBlock( "Checking face planarity" );
167  std::vector< Plane > face_planes;
168  face_planes.resize( surfmesh.nbFaces() );
169  bool planarity = true;
170  for ( int f = 0; f < surfmesh.nbFaces() && planarity; ++f )
171  {
172  PointRange X;
173  for ( auto v : faceVertices[ f ] )
174  X.push_back( vertices[ v ] );
175  face_planes[ f ] = Plane( X[ 0 ], X[ 1 ], X[ 2 ] );
176  for ( int v = 3; v < X.size(); v++ )
177  if ( ! face_planes[ f ]( X[ v ] ) )
178  {
179  trace.error() << "Face " << f << " is not planar." << std::endl;
180  planarity = false; break;
181  }
182  }
183  trace.endBlock();
184  if ( ! planarity ) return 1;
185  trace.beginBlock( "Computing polyhedron" );
186  for ( int f = 0; f < surfmesh.nbFaces(); ++f )
187  {
188  PointRange X;
189  for ( auto v : faceVertices[ f ] )
190  X.push_back( vertices[ v ] );
191  auto F = dconv.relativeEnvelope( X, face_planes[ f ], Algorithm::DIRECT );
192  faces_set.insert( F.cbegin(), F.cend() );
193  for ( int i = 0; i < X.size(); i++ )
194  {
195  PointRange Y { X[ i ], X[ (i+1)%X.size() ] };
196  if ( Y[ 1 ] < Y[ 0 ] ) std::swap( Y[ 0 ], Y[ 1 ] );
197  int idx1 = faceVertices[ f ][ i ];
198  int idx2 = faceVertices[ f ][ (i+1)%X.size() ];
199  // Variant (1): edges of both sides have many points in common
200  // auto A = dconv.relativeEnvelope( Y, face_planes[ f ], Algorithm::DIRECT );
201  // Variant (2): edges of both sides have much less points in common
202  auto A = dconv.relativeEnvelope( Y, F, Algorithm::DIRECT );
203  bool pos = idx1 < idx2;
204  (pos ? pos_edges_set : neg_edges_set).insert( A.cbegin(), A.cend() );
205  }
206  }
207  trace.endBlock();
208  std::vector< Point > face_points, common_edge_points, arc_points, final_arc_points ;
209  std::vector< Point > pos_edge_points, neg_edge_points, both_edge_points;
210  std::vector< Point > vertex_points = vertices;
211  std::sort( vertex_points.begin(), vertex_points.end() );
212  std::set_symmetric_difference( pos_edges_set.cbegin(), pos_edges_set.cend(),
213  neg_edges_set.cbegin(), neg_edges_set.cend(),
214  std::back_inserter( arc_points ) );
215  std::set_intersection( pos_edges_set.cbegin(), pos_edges_set.cend(),
216  neg_edges_set.cbegin(), neg_edges_set.cend(),
217  std::back_inserter( common_edge_points ) );
218  std::set_union( pos_edges_set.cbegin(), pos_edges_set.cend(),
219  neg_edges_set.cbegin(), neg_edges_set.cend(),
220  std::back_inserter( both_edge_points ) );
221  std::set_difference( faces_set.cbegin(), faces_set.cend(),
222  both_edge_points.cbegin(), both_edge_points.cend(),
223  std::back_inserter( face_points ) );
224  std::set_difference( pos_edges_set.cbegin(), pos_edges_set.cend(),
225  common_edge_points.cbegin(), common_edge_points.cend(),
226  std::back_inserter( pos_edge_points ) );
227  std::set_difference( neg_edges_set.cbegin(), neg_edges_set.cend(),
228  common_edge_points.cbegin(), common_edge_points.cend(),
229  std::back_inserter( neg_edge_points ) );
230  std::set_difference( common_edge_points.cbegin(), common_edge_points.cend(),
231  vertex_points.cbegin(), vertex_points.cend(),
232  std::back_inserter( final_arc_points ) );
233  auto total = vertex_points.size() + pos_edge_points.size()
234  + neg_edge_points.size()
235  + final_arc_points.size() + face_points.size();
236  trace.info() << "#vertex points=" << vertex_points.size() << std::endl;
237  trace.info() << "#pos edge points=" << pos_edge_points.size() << std::endl;
238  trace.info() << "#neg edge points=" << neg_edge_points.size() << std::endl;
239  trace.info() << "#arc points=" << final_arc_points.size() << std::endl;
240  trace.info() << "#face points=" << face_points.size() << std::endl;
241  trace.info() << "#total points=" << total << std::endl;
242
243  // display everything
244  Color colors[] =
245  { Color::Black, Color::Blue, Color::Red,
246  Color::Magenta, Color( 200, 200, 200 ) };
247  if ( view & 0x1 )
248  {
249  viewer.setLineColor( colors[ 0 ] );
250  viewer.setFillColor( colors[ 0 ] );
251  for ( auto p : vertices ) viewer << p;
252  }
253  if ( view & 0x2 )
254  {
255  viewer.setLineColor( colors[ 3 ] );
256  viewer.setFillColor( colors[ 3 ] );
257  for ( auto p : final_arc_points ) viewer << p;
258  }
259  if ( view & 0x4 )
260  {
261  viewer.setLineColor( colors[ 1 ] );
262  viewer.setFillColor( colors[ 1 ] );
263  for ( auto p : pos_edge_points ) viewer << p;
264  }
265  if ( view & 0x8 )
266  {
267  viewer.setLineColor( colors[ 2 ] );
268  viewer.setFillColor( colors[ 2 ] );
269  for ( auto p : neg_edge_points ) viewer << p;
270  }
271  if ( view & 0x10 )
272  {
273  viewer.setLineColor( colors[ 4 ] );
274  viewer.setFillColor( colors[ 4 ] );
275  for ( auto p : face_points ) viewer << p;
276  }
277  viewer << MViewer::updateDisplay;
278  return application.exec();
279
280 }
281 // //
283
Structure representing an RGB triple with alpha component.
Definition: Color.h:68
PointRange relativeEnvelope(const PointRange &Z, const PointRange &Y, EnvelopeAlgorithm algo=EnvelopeAlgorithm::DIRECT) const
Aim: This class is a model of CCellularGridSpaceND. It represents the cubical grid as a cell complex,...
std::ostream & error()
void beginBlock(const std::string &keyword="")
std::ostream & info()
double endBlock()
virtual void show()
Overload QWidget method in order to add a call to updateList() method (to ensure that the lists are w...
std::vector< Point > PointRange
DigitalPlane::Point Vector
Point::Coordinate Integer
DGtal::int32_t Integer
Definition: StdDefs.h:143
DGtal is the top-level namespace which contains all DGtal functions and types.
auto crossProduct(PointVector< 3, LeftEuclideanRing, LeftContainer > const &lhs, PointVector< 3, RightEuclideanRing, RightContainer > const &rhs) -> decltype(DGtal::constructFromArithmeticConversion(lhs, rhs))
Cross product of two 3D Points/Vectors.
Trace trace
Definition: Common.h:153
int main(int argc, char **argv)
Z3i::Integer Integer
std::vector< Point > PointRange
Space::Vector Vector
MedianPlane< false, true > Plane
Space::RealPoint RealPoint
Space::RealVector RealVector
Represents a signed cell in a cellular grid space by its Khalimsky coordinates and a boolean value.
Aim: An helper class for reading mesh files (Wavefront OBJ at this point) and creating a SurfaceMesh.
Aim: Represents an embedded mesh as faces and a list of vertices. Vertices may be shared among faces ...
Definition: SurfaceMesh.h:92
RealPoint & position(Vertex v)
Definition: SurfaceMesh.h:647
Size nbFaces() const
Definition: SurfaceMesh.h:296
const std::vector< Vertices > & allIncidentVertices() const
Definition: SurfaceMesh.h:371
Size nbVertices() const
Definition: SurfaceMesh.h:288
MyPointD Point
Definition: testClone2.cpp:383
void insert(VContainer1 &c1, LContainer2 &c2, unsigned int idx, double v)