DGtal  1.4.2
testArithmeticDSS-benchmark.cpp
Go to the documentation of this file.
1 
31 #include <cstdlib>
32 #include <iostream>
33 #include "DGtal/base/Common.h"
34 #include "DGtal/kernel/CPointPredicate.h"
35 #include "DGtal/arithmetic/IntegerComputer.h"
36 #include "DGtal/arithmetic/SternBrocot.h"
37 #include "DGtal/arithmetic/Pattern.h"
38 #include "DGtal/arithmetic/StandardDSLQ0.h"
39 #include "DGtal/geometry/curves/ArithmeticalDSSComputer.h"
41 
42 using namespace std;
43 using namespace DGtal;
44 
46 // Functions for testing class SternBrocot.
48 
49 template <typename DSL>
50 bool checkSubArithmeticDSS( const DSL & D,
51  const typename DSL::Point & A,
52  const typename DSL::Point & B )
53 {
54  typedef typename DSL::Integer Integer;
55  typedef typename DSL::ConstIterator ConstIterator;
57 
58  ConstIterator it = D.begin( A );
59  ConstIterator it_end = D.end( B );
60  ADSS dss;
61  dss.init( it );
62  while ( ( dss.end() != it_end )
63  && ( dss.extendFront() ) ) {}
64  std::cout << D.a() << " " << D.b() << " " << D.mu() << " "
65  << dss.a() << " " << dss.b() << " " << dss.mu() << " "
66  << A[0] << " " << A[1] << " " << B[0] << " " << B[1]
67  << std::endl;
68 
69  return true;
70 }
71 
72 // template <typename Fraction>
73 // bool testSubStandardDSLQ0( unsigned int nbtries )
74 // {
75 // typedef StandardDSLQ0<Fraction> DSL;
76 // typedef typename Fraction::Integer Integer;
77 // typedef typename Fraction::Quotient Quotient;
78 // typedef typename DSL::Point Point;
79 // typedef typename DSL::ConstIterator ConstIterator;
80 // typedef typename DSL::Point2I Point2I;
81 // typedef typename DSL::Vector2I Vector2I;
82 // IntegerComputer<Integer> ic;
83 
84 // std::cout << "# a b mu a1 b1 mu1 Ax Ay Bx By" << std::endl;
85 // for ( unsigned int i = 0; i < nbtries; ++i )
86 // {
87 // Integer a( rand() % 12000 + 1 );
88 // Integer b( rand() % 12000 + 1 );
89 // if ( ic.gcd( a, b ) == 1 )
90 // {
91 // for ( Integer mu = 0; mu < 5; ++mu )
92 // {
93 // DSL D( a, b, rand() % 10000 );
94 // for ( Integer x = 0; x < 10; ++x )
95 // {
96 // Integer x1 = rand() % 1000;
97 // Integer x2 = x1 + 1 + ( rand() % 1000 );
98 // Point A = D.lowestY( x1 );
99 // Point B = D.lowestY( x2 );
100 // checkSubArithmeticDSS<DSL>( D, A, B );
101 // }
102 // }
103 // }
104 // }
105 // return true;
106 // }
107 
108 template <typename Fraction>
109 bool testSubStandardDSLQ0( unsigned int nbtries,
110  typename Fraction::Integer moda,
111  typename Fraction::Integer modb,
112  typename Fraction::Integer modx )
113 {
114  typedef StandardDSLQ0<Fraction> DSL;
115  typedef typename Fraction::Integer Integer;
116  typedef typename DSL::Point Point;
118 
119  std::cout << "# a b mu a1 b1 mu1 Ax Ay Bx By" << std::endl;
120  for ( unsigned int i = 0; i < nbtries; ++i )
121  {
122  Integer a( rand() % moda + 1 );
123  Integer b( rand() % modb + 1 );
124  if ( ic.gcd( a, b ) == 1 )
125  {
126  for ( Integer mu = 0; mu < 5; ++mu )
127  {
128  DSL D( a, b, rand() % (moda+modb) );
129  for ( Integer x = 0; x < 10; ++x )
130  {
131  Integer x1 = rand() % modx;
132  Integer x2 = x1 + 1 + ( rand() % modx );
133  Point A = D.lowestY( x1 );
134  Point B = D.lowestY( x2 );
135  checkSubArithmeticDSS<DSL>( D, A, B );
136  }
137  }
138  }
139  }
140  return true;
141 }
142 
143 
145 // Standard services - public :
146 
147 int main( int argc, char** argv)
148 {
150  typedef SB::Fraction Fraction;
151  typedef Fraction::Integer Integer;
152  unsigned int nbtries = ( argc > 1 ) ? atoi( argv[ 1 ] ) : 10000;
153  Integer moda = ( argc > 2 ) ? atoll( argv[ 2 ] ) : 12000;
154  Integer modb = ( argc > 3 ) ? atoll( argv[ 3 ] ) : 12000;
155  Integer modx = ( argc > 4 ) ? atoll( argv[ 4 ] ) : 1000;
156  testSubStandardDSLQ0<Fraction>( nbtries, moda, modb, modx );
157  return 0;
158 }
159 
160 // //
Aim: This class is a wrapper around ArithmeticalDSS that is devoted to the dynamic recognition of dig...
ConstIterator begin() const
Integer gcd(IntegerParamType a, IntegerParamType b) const
Aim: Represents a digital straight line with slope in the first quadrant (Q0: x >= 0,...
Definition: StandardDSLQ0.h:80
Aim: The Stern-Brocot tree is the tree of irreducible fractions. This class allows to construct it pr...
Definition: SternBrocot.h:78
MyDigitalSurface::ConstIterator ConstIterator
DGtal is the top-level namespace which contains all DGtal functions and types.
int main(int argc, char **argv)
bool checkSubArithmeticDSS(const DSL &D, const typename DSL::Point &A, const typename DSL::Point &B)
bool testSubStandardDSLQ0(unsigned int nbtries, typename Fraction::Integer moda, typename Fraction::Integer modb, typename Fraction::Integer modx)
MyPointD Point
Definition: testClone2.cpp:383