DGtal  1.4.2
curvature-comparator-ii-cnc-3d.cpp
Go to the documentation of this file.
1 
73 #include <iostream>
74 #include <fstream>
75 #include <algorithm>
76 #include "DGtal/base/Common.h"
77 #include "DGtal/shapes/SurfaceMesh.h"
79 #include "DGtal/geometry/meshes/CorrectedNormalCurrentComputer.h"
81 
82 #include "DGtal/helpers/Shortcuts.h"
83 #include "DGtal/helpers/ShortcutsGeometry.h"
84 #include "DGtal/io/writers/SurfaceMeshWriter.h"
85 #include "DGtal/io/colormaps/GradientColorMap.h"
86 #include "DGtal/io/colormaps/QuantifiedColorMap.h"
87 
89 makeColorMap( double min_value, double max_value )
90 {
91  DGtal::GradientColorMap< double > gradcmap( min_value, max_value );
92  gradcmap.addColor( DGtal::Color( 0, 0, 255 ) );
93  gradcmap.addColor( DGtal::Color( 0, 255, 255 ) );
94  gradcmap.addColor( DGtal::Color( 255, 255, 255 ) );
95  gradcmap.addColor( DGtal::Color( 255, 255, 0 ) );
96  gradcmap.addColor( DGtal::Color( 255, 0, 0 ) );
97  return gradcmap;
98 }
99 
100 void usage( int argc, char* argv[] )
101 {
102  using namespace DGtal;
103  using namespace DGtal::Z3i;
104  typedef Shortcuts< KSpace > SH;
105  std::cout << "Usage: " << std::endl
106  << "\t" << argv[ 0 ] << " <P> <B> <h> <mode>" << std::endl
107  << std::endl
108  << "Compare Integral Invariant (II) curvature estimations " << std::endl
109  << "with Corrected Normal Current (CNC) estimations, either "<< std::endl
110  << "interpolated (Interp) or constant per face (Const)." << std::endl
111  << "- builds the surface mesh from polynomial <P>" << std::endl
112  << "- <B> defines the digitization space size [-B,B]^3" << std::endl
113  << "- <h> is the gridstep digitization" << std::endl
114  << "- <mode> is either Const for constant corrected normal" << std::endl
115  << " vector field or Interp for interpolated corrected" << std::endl
116  << " normal vector field." << std::endl
117  << "It outputs timings and accuracy statistics for both " << std::endl
118  << "methods." << std::endl;
119  std::cout << "You may either write your own polynomial as 3*x^2-z^2*x*y+1" << std::endl
120  <<"or use a predefined polynomial in the following list:" << std::endl;
121  auto L = SH::getPolynomialList();
122  for ( const auto& p : L )
123  std::cout << p.first << " : " << p.second << std::endl;
124 }
125 
126 int main( int argc, char* argv[] )
127 {
128  if ( argc <= 1 )
129  {
130  usage( argc, argv );
131  return 0;
132  }
134  using namespace DGtal;
135  using namespace DGtal::Z3i;
138  typedef Shortcuts< KSpace > SH;
139  typedef ShortcutsGeometry< KSpace > SHG;
141  std::string poly = argv[ 1 ]; // polynomial
142  const double B = argc > 2 ? atof( argv[ 2 ] ) : 1.0; // max ||_oo bbox
143  const double h = argc > 3 ? atof( argv[ 3 ] ) : 1.0; // gridstep
144  std::string mode = argc > 4 ? argv[ 4 ] : "Const"; // either Const or Interp
145  bool interpolated = mode == "Interp";
146  if ( interpolated )
147  trace.info() << "Using vertex-*Interpolated* Corrected Normal Current" << std::endl;
148  else
149  trace.info() << "Using face-*Constant* Corrected Normal Current" << std::endl;
151  // Read polynomial and build digital surface
152  auto params = SH::defaultParameters() | SHG::defaultParameters();
153  // Choose depth-first traversal to speed-up II computations.
154  params( "surfaceTraversal", "DepthFirst" );
155  params( "t-ring", 3 );
156  params( "polynomial", poly )( "gridstep", h );
157  params( "minAABB", -B )( "maxAABB", B );
158  params( "offset", 3.0 );
159  auto shape = SH::makeImplicitShape3D( params );
160  auto K = SH::getKSpace( params );
161  auto dshape = SH::makeDigitizedImplicitShape3D( shape, params );
162  auto bimage = SH::makeBinaryImage( dshape, params );
163  if ( bimage == nullptr )
164  {
165  trace.error() << "Unable to read polynomial <"
166  << poly.c_str() << ">" << std::endl;
167  return 1;
168  }
169  auto sembedder = SH::getSCellEmbedder( K );
170  auto embedder = SH::getCellEmbedder( K );
171  auto surface = SH::makeDigitalSurface( bimage, K, params );
172  auto surfels = SH::getSurfelRange( surface, params );
173  trace.info() << "- surface has " << surfels.size()<< " surfels." << std::endl;
175 
177  params( "r-radius", 3.0 );
178  params( "alpha", 0.33 );
179  double ii_r = 3.0 * pow( h, 0.33 );
180  Clock c;
181  trace.beginBlock( "Computing II curvatures" );
182  std::vector< double > HII = SHG::getIIMeanCurvatures ( bimage, surfels, params );
183  std::vector< double > GII = SHG::getIIGaussianCurvatures( bimage, surfels, params );
184  auto ii_t = trace.endBlock();
186 
188  SM smesh;
189  std::vector< SM::Vertices > faces;
190  SH::Cell2Index c2i;
191  auto pointels = SH::getPointelRange( c2i, surface );
192  auto vertices = SH::RealPoints( pointels.size() );
193  std::transform( pointels.cbegin(), pointels.cend(), vertices.begin(),
194  [&] (const SH::Cell& c) { return h * embedder( c ); } );
195  for ( auto&& surfel : surfels )
196  {
197  const auto primal_surfel_vtcs = SH::getPointelRange( K, surfel );
198  SM::Vertices face;
199  for ( auto&& primal_vtx : primal_surfel_vtcs )
200  face.push_back( c2i[ primal_vtx ] );
201  faces.push_back( face );
202  }
203  smesh.init( vertices.cbegin(), vertices.cend(),
204  faces.cbegin(), faces.cend() );
205  trace.info() << smesh << std::endl;
207 
209  trace.beginBlock( "Computing True curvatures" );
210  auto exp_H = SHG::getMeanCurvatures( shape, K, surfels, params );
211  auto exp_G = SHG::getGaussianCurvatures( shape, K, surfels, params );
212  trace.endBlock();
214 
215  trace.beginBlock( "Computing CNC curvatures" );
217  // Builds a CorrectedNormalCurrentComputer object onto the SurfaceMesh object
218  CNC cnc( smesh );
219  // Estimates normal vectors using Integral Invariant Normal estimator
220  trace.beginBlock( "Computing II normal vectors" );
221  auto face_normals = SHG::getIINormalVectors( bimage, surfels, params );
222  double cnc_tn = trace.endBlock();
223  // Set corrected face normals => Corrected Normal Current with
224  // constant per face corrected vector field.
225  smesh.setFaceNormals( face_normals.cbegin(), face_normals.cend() ); // CCNC
226  // Set corrected vertex normals => Corrected Normal Current with
227  // smooth linearly interpolated per face corrected vector field.
228  if ( interpolated ) smesh.computeVertexNormalsFromFaceNormals(); // ICNC
229  // computes area, mean and Gaussian curvature measures
230  auto mu0 = cnc.computeMu0();
231  auto mu1 = cnc.computeMu1();
232  auto mu2 = cnc.computeMu2();
234 
236  // estimates mean (H) and Gaussian (G) curvatures by measure normalization.
237  double cnc_mr = 1.0 * sqrt( h );
238  trace.info() << "CNC measuring radius = " << cnc_mr << std::endl;
239  std::vector< double > H( smesh.nbFaces() );
240  std::vector< double > G( smesh.nbFaces() );
241  for ( auto f = 0; f < smesh.nbFaces(); ++f )
242  {
243  const auto b = smesh.faceCentroid( f );
244  const auto area = mu0.measure( b, cnc_mr, f );
245  H[ f ] = cnc.meanCurvature ( area, mu1.measure( b, cnc_mr, f ) );
246  G[ f ] = cnc.GaussianCurvature( area, mu2.measure( b, cnc_mr, f ) );
247  }
249  double cnc_t = trace.endBlock();
250 
252  auto HII_min_max = std::minmax_element( HII.cbegin(), HII.cend() );
253  auto GII_min_max = std::minmax_element( GII.cbegin(), GII.cend() );
254  auto H_min_max = std::minmax_element( H.cbegin(), H.cend() );
255  auto G_min_max = std::minmax_element( G.cbegin(), G.cend() );
256  auto exp_H_min_max = std::minmax_element( exp_H.cbegin(), exp_H.cend() );
257  auto exp_G_min_max = std::minmax_element( exp_G.cbegin(), exp_G.cend() );
258  trace.info() << "Expected mean curvatures:"
259  << " min=" << *exp_H_min_max.first << " max=" << *exp_H_min_max.second
260  << std::endl;
261  trace.info() << "Computed II mean curvatures:"
262  << " min=" << *HII_min_max.first << " max=" << *HII_min_max.second
263  << std::endl;
264  trace.info() << "Computed CNC mean curvatures:"
265  << " min=" << *H_min_max.first << " max=" << *H_min_max.second
266  << std::endl;
267  trace.info() << "Expected Gaussian curvatures:"
268  << " min=" << *exp_G_min_max.first << " max=" << *exp_G_min_max.second
269  << std::endl;
270  trace.info() << "Computed II Gaussian curvatures:"
271  << " min=" << *GII_min_max.first << " max=" << *GII_min_max.second
272  << std::endl;
273  trace.info() << "Computed CNC Gaussian curvatures:"
274  << " min=" << *G_min_max.first << " max=" << *G_min_max.second
275  << std::endl;
276  const auto error_HII = SHG::getScalarsAbsoluteDifference( HII, exp_H );
277  const auto stat_error_HII = SHG::getStatistic( error_HII );
278  const auto error_HII_l2 = SHG::getScalarsNormL2( HII, exp_H );
279  trace.info() << "|H-H_II|_oo = " << stat_error_HII.max() << std::endl;
280  trace.info() << "|H-H_II|_2 = " << error_HII_l2 << std::endl;
281  const auto error_H = SHG::getScalarsAbsoluteDifference( H, exp_H );
282  const auto stat_error_H = SHG::getStatistic( error_H );
283  const auto error_H_l2 = SHG::getScalarsNormL2( H, exp_H );
284  trace.info() << "|H-H_CNC|_oo = " << stat_error_H.max() << std::endl;
285  trace.info() << "|H-H_CNC|_2 = " << error_H_l2 << std::endl;
286  const auto error_GII = SHG::getScalarsAbsoluteDifference( GII, exp_G );
287  const auto stat_error_GII = SHG::getStatistic( error_GII );
288  const auto error_GII_l2 = SHG::getScalarsNormL2( GII, exp_G );
289  trace.info() << "|G-G_II|_oo = " << stat_error_GII.max() << std::endl;
290  trace.info() << "|G-G_II|_2 = " << error_GII_l2 << std::endl;
291  const auto error_G = SHG::getScalarsAbsoluteDifference( G, exp_G );
292  const auto stat_error_G = SHG::getStatistic( error_G );
293  const auto error_G_l2 = SHG::getScalarsNormL2( G, exp_G );
294  trace.info() << "|G-G_CNC|_oo = " << stat_error_G.max() << std::endl;
295  trace.info() << "|G-G_CNC|_2 = " << error_G_l2 << std::endl;
297 
299  std::cout << "# " << argv[ 0 ] << std::endl
300  << "# polynomial: " << poly << std::endl
301  << "# CNC mode: " << mode << std::endl;
302  // 1 2 3 4 5 6 7 8
303  std::cout << "# h nb_surfels ii_t ii_r ii_Hoo ii_H2 ii_Goo ii_G2 ";
304  // 9 10 11 12 13 14 15
305  std::cout << "cnc_tn cnc_t cnc_mr cnc_Hoo cnc_H2 cnc_Goo cnc_G2" << std::endl;
306  std::cout << h << " " << surfels.size() << " " << ii_t << " " << ii_r
307  << " " << stat_error_HII.max() << " " << error_HII_l2
308  << " " << stat_error_GII.max() << " " << error_GII_l2
309  << " " << cnc_tn << " " << cnc_t << " " << cnc_mr
310  << " " << stat_error_H.max() << " " << error_H_l2
311  << " " << stat_error_G.max() << " " << error_G_l2 << std::endl;
313  return 0;
314 }
Structure representing an RGB triple with alpha component.
Definition: Color.h:68
Aim: This class template may be used to (linearly) convert scalar values in a given range into a colo...
void addColor(const Color &color)
Aim: This class is used to simplify shape and surface creation. With it, you can create new shapes an...
Aim: This class is used to simplify shape and surface creation. With it, you can create new shapes an...
Definition: Shortcuts.h:105
std::ostream & error()
void beginBlock(const std::string &keyword="")
std::ostream & info()
double endBlock()
int main(int argc, char *argv[])
DGtal::GradientColorMap< double > makeColorMap(double min_value, double max_value)
[curvature-comparator-Includes]
void usage(int argc, char *argv[])
CountedPtr< SH3::DigitalSurface > surface
SMesh::Vertices Vertices
Z3i this namespace gathers the standard of types for 3D imagery.
DGtal is the top-level namespace which contains all DGtal functions and types.
Trace trace
Definition: Common.h:153
Aim: Utility class to compute curvature measures induced by (1) a corrected normal current defined by...
Aim: Represents an embedded mesh as faces and a list of vertices. Vertices may be shared among faces ...
Definition: SurfaceMesh.h:92
KSpace K
KSpace::Cell Cell