DGtal  1.3.beta
Typedefs | Functions | Variables
testCubicalComplex.cpp File Reference
#include <iostream>
#include <map>
#include <unordered_map>
#include "DGtal/base/Common.h"
#include "DGtal/kernel/domains/HyperRectDomain.h"
#include "DGtal/topology/KhalimskySpaceND.h"
#include "DGtal/topology/KhalimskyCellHashFunctions.h"
#include "DGtal/topology/CubicalComplex.h"
#include "DGtalCatch.h"
Include dependency graph for testCubicalComplex.cpp:

Go to the source code of this file.

Typedefs

typedef KSpace::Point Point
 
typedef KSpace::Cell Cell
 
typedef std::unordered_map< Cell, CubicalCellDataMap
 
typedef CubicalComplex< KSpace, MapCC
 
typedef CC::CellMapConstIterator CellMapConstIterator
 

Functions

 srand (0)
 
K init (Point(0, 0, 0), Point(512, 512, 512), true)
 
std::vector< int > nbCoFaces (4, 0)
 
std::vector< int > nbFaces (6, 0)
 
std::vector< int > nbFaces2 (6, 0)
 
std::vector< int > nbBdry (10, 0)
 
std::vector< int > nbBdry2 (10, 0)
 
 GIVEN ("A cubical complex with random 3-cells")
 
 SCENARIO ("CubicalComplex< K3,std::unordered_map<> > collapse tests", "[cubical_complex][collapse]")
 
 SCENARIO ("CubicalComplex< K3,std::unordered_map<> > link tests", "[cubical_complex][link]")
 
 SCENARIO ("CubicalComplex< K3,std::map<> > collapse tests", "[cubical_complex][collapse]")
 
 SCENARIO ("CubicalComplex< K3,std::map<> > link tests", "[cubical_complex][link]")
 
 SCENARIO ("CubicalComplex< K3,std::map<> > concept check tests", "[cubical_complex][concepts]")
 
 SCENARIO ("CubicalComplex< K2,std::map<> > set operations and relations", "[cubical_complex][ccops]")
 

Variables

static const int NBCELLS = 1000
 
KSpace K
 

Detailed Description

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Author
Jacques-Olivier Lachaud (jacqu.nosp@m.es-o.nosp@m.livie.nosp@m.r.la.nosp@m.chaud.nosp@m.@uni.nosp@m.v-sav.nosp@m.oie..nosp@m.fr ) Laboratory of Mathematics (CNRS, UMR 5127), University of Savoie, France
Date
2015/08/28

Functions for testing class CubicalComplex.

This file is part of the DGtal library.

Definition in file testCubicalComplex.cpp.

Typedef Documentation

◆ CC

typedef CubicalComplex< KSpace, Map > CC

◆ Cell

typedef KSpace::Cell Cell

◆ CellMapConstIterator

◆ Map

typedef std::map< Cell, CubicalCellData > Map

◆ Point

Initial value:

Definition at line 53 of file testCubicalComplex.cpp.

Function Documentation

◆ GIVEN()

GIVEN ( "A cubical complex with random 3-cells"  )

Definition at line 70 of file testCubicalComplex.cpp.

70  {
71  CC complex( K );
72  for ( int n = 0; n < NBCELLS; ++n )
73  {
74  Point p( (rand() % 512) | 0x1, (rand() % 512) | 0x1, (rand() % 512) | 0x1 );
75  Cell cell = K.uCell( p );
76  complex.insertCell( cell );
77  }
78  THEN( "It has only 3-cells and no other type of cells" ) {
79  REQUIRE( complex.nbCells( 0 ) == 0 );
80  REQUIRE( complex.nbCells( 1 ) == 0 );
81  REQUIRE( complex.nbCells( 2 ) == 0 );
82  REQUIRE( complex.nbCells( 3 ) > 0 );
83  }
84 
85  WHEN( "Computing proper faces of these 3-cells" ) {
86  std::vector<Cell> faces;
87  std::back_insert_iterator< std::vector<Cell> > outIt( faces );
88  for ( CellMapConstIterator it = complex.begin( 3 ), itE = complex.end( 3 );
89  it != itE; ++it )
90  complex.faces( outIt, it->first );
91  THEN( "There are no proper faces within this complex" ) {
92  REQUIRE( faces.size() == 0 );
93  }
94  }
95 
96  WHEN( "Closing the cubical complex" ) {
97  complex.close();
98  THEN( "It has cells of all dimensions." ) {
99  REQUIRE( complex.nbCells( 0 ) > 0 );
100  REQUIRE( complex.nbCells( 1 ) > 0 );
101  REQUIRE( complex.nbCells( 2 ) > 0 );
102  }
103 
104  WHEN( "Computing the direct co-faces of 2-cells" ) {
105  for ( CellMapConstIterator it = complex.begin( 2 ), itE = complex.end( 2 );
106  it != itE; ++it )
107  {
108  std::vector<Cell> faces;
109  std::back_insert_iterator< std::vector<Cell> > outIt( faces );
110  complex.directCoFaces( outIt, it->first );
111  int n = static_cast<int>(faces.size());
112  if ( n >= 3 ) n = 3; // should not happen
113  nbCoFaces[ n ]++;
114  }
115  THEN( "None of them are incident to zero 3-cells" ) {
116  REQUIRE( nbCoFaces[ 0 ] == 0 );
117  } AND_THEN ( "Most of them are incident to one 3-cells and some of them to two 3-cells" ) {
118  REQUIRE( nbCoFaces[ 1 ] > 10*nbCoFaces[ 2 ] );
119  } AND_THEN ("None of them are incident to three or more 3-cells" ) {
120  REQUIRE( nbCoFaces[ 3 ] == 0 );
121  }
122  }
123 
124  WHEN( "Computing direct faces of 2-cells" ) {
125  for ( CellMapConstIterator it = complex.begin( 2 ), itE = complex.end( 2 );
126  it != itE; ++it )
127  {
128  std::vector<Cell> faces;
129  std::back_insert_iterator< std::vector<Cell> > outIt( faces );
130  complex.directFaces( outIt, it->first, true );
131  auto n = faces.size();
132  if ( n < 4 ) n = 3; // should not happen
133  if ( n > 4 ) n = 5; // should not happen
134  nbFaces[ n ]++;
135  }
136  for ( CellMapConstIterator it = complex.begin( 2 ), itE = complex.end( 2 );
137  it != itE; ++it )
138  {
139  std::vector<Cell> faces;
140  std::back_insert_iterator< std::vector<Cell> > outIt( faces );
141  complex.directFaces( outIt, it->first );
142  auto n = faces.size();
143  if ( n < 4 ) n = 3; // should not happen
144  if ( n > 4 ) n = 5; // should not happen
145  nbFaces2[ n ]++;
146  }
147  THEN( "All of them have exactly 4 incident 1-cells when computed with hint closed" ) {
148  REQUIRE( nbFaces[ 3 ] == 0 );
149  REQUIRE( nbFaces[ 4 ] > 0 );
150  REQUIRE( nbFaces[ 5 ] == 0 );
151  } AND_THEN( "All of them have exactly 4 incident 1-cells when computed without hint" ) {
152  REQUIRE( nbFaces2[ 3 ] == 0 );
153  REQUIRE( nbFaces2[ 4 ] > 0 );
154  REQUIRE( nbFaces2[ 5 ] == 0 );
155  } AND_THEN( "It gives the same number of incident cells with or without hint" ) {
156  REQUIRE( nbFaces[ 4 ] == nbFaces2[ 4 ] );
157  }
158  }
159 
160  WHEN( "Computing boundaries of 2-cells" ) {
161  for ( CellMapConstIterator it = complex.begin( 2 ), itE = complex.end( 2 );
162  it != itE; ++it )
163  {
164  CC::Cells faces = complex.cellBoundary( it->first, true );
165  size_t n = faces.size();
166  if ( n < 8 ) n = 7; // should not happen
167  if ( n > 8 ) n = 9; // should not happen
168  nbBdry[ n ]++;
169  }
170  for ( CellMapConstIterator it = complex.begin( 2 ), itE = complex.end( 2 );
171  it != itE; ++it )
172  {
173  CC::Cells faces = complex.cellBoundary( it->first, false );
174  size_t n = faces.size();
175  if ( n < 8 ) n = 7; // should not happen
176  if ( n > 8 ) n = 9; // should not happen
177  nbBdry2[ n ]++;
178  }
179  THEN( "All of them contain exactly 8 cells when computed with hint closed" ) {
180  REQUIRE( nbBdry[ 7 ] == 0 );
181  REQUIRE( nbBdry[ 8 ] > 0 );
182  REQUIRE( nbBdry[ 9 ] == 0 );
183  } AND_THEN( "All of them contain exactly 8 cells when computed without hint" ) {
184  REQUIRE( nbBdry2[ 7 ] == 0 );
185  REQUIRE( nbBdry2[ 8 ] > 0 );
186  REQUIRE( nbBdry2[ 9 ] == 0 );
187  } AND_THEN( "It gives the same number of incident cells with or without hint" ) {
188  REQUIRE( nbBdry[ 8 ] == nbBdry2[ 8 ] );
189  }
190  }
191  } // WHEN( "Closing the cubical complex" ) {
192  }

References DGtal::CubicalComplex< TKSpace, TCellContainer >::begin(), DGtal::CubicalComplex< TKSpace, TCellContainer >::cellBoundary(), DGtal::CubicalComplex< TKSpace, TCellContainer >::close(), DGtal::CubicalComplex< TKSpace, TCellContainer >::directCoFaces(), DGtal::CubicalComplex< TKSpace, TCellContainer >::directFaces(), DGtal::CubicalComplex< TKSpace, TCellContainer >::end(), DGtal::CubicalComplex< TKSpace, TCellContainer >::faces(), DGtal::CubicalComplex< TKSpace, TCellContainer >::insertCell(), K, nbBdry(), nbBdry2(), NBCELLS, DGtal::CubicalComplex< TKSpace, TCellContainer >::nbCells(), nbCoFaces(), nbFaces(), nbFaces2(), REQUIRE(), and DGtal::KhalimskySpaceND< dim, TInteger >::uCell().

Referenced by SCENARIO(), and TEST_CASE_METHOD().

◆ init()

K init ( Point(0, 0, 0)  ,
Point(512, 512, 512)  ,
true   
)

◆ nbBdry()

std::vector< int > nbBdry ( 10  ,
 
)

Referenced by GIVEN().

◆ nbBdry2()

std::vector< int > nbBdry2 ( 10  ,
 
)

Referenced by GIVEN().

◆ nbCoFaces()

std::vector< int > nbCoFaces ( ,
 
)

Referenced by GIVEN().

◆ nbFaces()

std::vector< int > nbFaces ( ,
 
)

Referenced by GIVEN().

◆ nbFaces2()

std::vector< int > nbFaces2 ( ,
 
)

Referenced by GIVEN().

◆ SCENARIO() [1/6]

SCENARIO ( "CubicalComplex< K2,std::map<> > set operations and relations"  ,
""  [cubical_complex][ccops] 
)

Definition at line 576 of file testCubicalComplex.cpp.

577 {
578  typedef KhalimskySpaceND<2> KSpace;
579  typedef KSpace::Space Space;
581  typedef KSpace::Point Point;
582  typedef KSpace::Cell Cell;
583  typedef std::map<Cell, CubicalCellData> Map;
585 
586  KSpace K;
587  K.init( Point( 0,0 ), Point( 5,3 ), true );
588  Domain domain( Point( 0,0 ), Point( 5,3 ) );
589  CC X1( K );
590  X1.insertCell( K.uSpel( Point(1,1) ) );
591  X1.insertCell( K.uSpel( Point(2,1) ) );
592  X1.insertCell( K.uSpel( Point(3,1) ) );
593  X1.insertCell( K.uSpel( Point(2,2) ) );
594  CC X1c = ~ X1;
595 
596  CC X2( K );
597  X2.insertCell( K.uSpel( Point(2,2) ) );
598  X2.insertCell( K.uSpel( Point(3,2) ) );
599  X2.insertCell( K.uSpel( Point(4,2) ) );
600  X2.close();
601  CC X2c = ~ X2;
602  REQUIRE( ( X1 & X2 ).size() < X1.size() );
603  bool X1_and_X2_included_in_X1 = ( X1 & X2 ) <= X1;
604  bool X1c_and_X2c_included_in_X1c = ( X1c & X2c ) <= X1c;
605  CC A = ~( X1 & X2 );
606  CC B = ~( *(X1c & X2c) );
607  CAPTURE( A );
608  CAPTURE( B );
609  bool cl_X1_and_X2_equal_to_X1c_and_X2c = A == B;
610 
611  REQUIRE( X1_and_X2_included_in_X1 );
612  REQUIRE( X1c_and_X2c_included_in_X1c );
613  REQUIRE( cl_X1_and_X2_equal_to_X1c_and_X2c );
614 
615  CC X1bd = X1c - *X1c;
616  CAPTURE( X1bd );
617  CAPTURE( X1.boundary() );
618  bool X1bd_equal_X1boundary = X1bd == X1.boundary();
619  REQUIRE( X1bd_equal_X1boundary );
620 }

References DGtal::CubicalComplex< TKSpace, TCellContainer >::boundary(), CAPTURE(), DGtal::CubicalComplex< TKSpace, TCellContainer >::close(), domain, DGtal::KhalimskySpaceND< dim, TInteger >::init(), DGtal::CubicalComplex< TKSpace, TCellContainer >::insertCell(), K, REQUIRE(), DGtal::CubicalComplex< TKSpace, TCellContainer >::size(), and DGtal::KhalimskySpaceND< dim, TInteger >::uSpel().

◆ SCENARIO() [2/6]

SCENARIO ( "CubicalComplex< K3,std::map<> > collapse tests"  ,
""  [cubical_complex][collapse] 
)

Definition at line 454 of file testCubicalComplex.cpp.

455 {
456  typedef KhalimskySpaceND<3> KSpace;
457  typedef KSpace::Point Point;
458  typedef KSpace::Cell Cell;
459  typedef KSpace::Integer Integer;
460  typedef std::map<Cell, CubicalCellData> Map;
462  typedef CC::CellMapIterator CellMapIterator;
463 
464  srand( 0 );
465  KSpace K;
466  K.init( Point( 0,0,0 ), Point( 512,512,512 ), true );
467 
468  GIVEN( "A closed cubical complex made of 3x3x3 voxels with their incident cells" ) {
469  CC complex( K );
470  std::vector<Cell> S;
471  for ( Integer x = 0; x < 3; ++x )
472  for ( Integer y = 0; y < 3; ++y )
473  for ( Integer z = 0; z < 3; ++z )
474  {
475  S.push_back( K.uSpel( Point( x, y, z ) ) );
476  complex.insertCell( S.back() );
477  }
478  complex.close();
479  CAPTURE( complex.nbCells( 0 ) );
480  CAPTURE( complex.nbCells( 1 ) );
481  CAPTURE( complex.nbCells( 2 ) );
482  CAPTURE( complex.nbCells( 3 ) );
483 
484  THEN( "It has Euler characteristic 1" ) {
485  REQUIRE( complex.euler() == 1 );
486  }
487 
488  WHEN( "Fixing two vertices of this big cube and collapsing it" ) {
489  CellMapIterator it1 = complex.findCell( 0, K.uCell( Point( 0, 0, 0 ) ) );
490  CellMapIterator it2 = complex.findCell( 0, K.uCell( Point( 4, 4, 4 ) ) );
491  REQUIRE( it1 != complex.end( 0 ) );
492  REQUIRE( it2 != complex.end( 0 ) );
493  it1->second.data |= CC::FIXED;
494  it2->second.data |= CC::FIXED;
496  functions::collapse( complex, S.begin(), S.end(), P, false, true );
497  CAPTURE( complex.nbCells( 0 ) );
498  CAPTURE( complex.nbCells( 1 ) );
499  CAPTURE( complex.nbCells( 2 ) );
500  CAPTURE( complex.nbCells( 3 ) );
501 
502  THEN( "It keeps its topology so its euler characteristic is 1" ) {
503  REQUIRE( complex.euler() == 1 );
504  } AND_THEN( "It has no more 2-cells and 3-cells" ) {
505  REQUIRE( complex.nbCells( 2 ) == 0 );
506  REQUIRE( complex.nbCells( 3 ) == 0 );
507  } AND_THEN( "It has only 0-cells and 1-cells" ) {
508  REQUIRE( complex.nbCells( 0 ) > 0 );
509  REQUIRE( complex.nbCells( 1 ) > 0 );
510  }
511  }
512  }
513 }

References CAPTURE(), DGtal::CubicalComplex< TKSpace, TCellContainer >::close(), DGtal::CubicalComplex< TKSpace, TCellContainer >::end(), DGtal::CubicalComplex< TKSpace, TCellContainer >::euler(), DGtal::CubicalComplex< TKSpace, TCellContainer >::findCell(), GIVEN(), DGtal::KhalimskySpaceND< dim, TInteger >::init(), DGtal::CubicalComplex< TKSpace, TCellContainer >::insertCell(), K, DGtal::CubicalComplex< TKSpace, TCellContainer >::nbCells(), REQUIRE(), srand(), DGtal::KhalimskySpaceND< dim, TInteger >::uCell(), and DGtal::KhalimskySpaceND< dim, TInteger >::uSpel().

◆ SCENARIO() [3/6]

SCENARIO ( "CubicalComplex< K3,std::map<> > concept check tests"  ,
""  [cubical_complex][concepts] 
)

Definition at line 563 of file testCubicalComplex.cpp.

564 {
565  typedef KhalimskySpaceND<3> KSpace;
566  typedef KSpace::Cell Cell;
567  typedef std::map<Cell, CubicalCellData> Map;
569 
570  BOOST_CONCEPT_ASSERT(( boost::Container<CC> ));
571  BOOST_CONCEPT_ASSERT(( boost::ForwardIterator<CC::Iterator> ));
572  BOOST_CONCEPT_ASSERT(( boost::ForwardIterator<CC::ConstIterator> ));
573 }

◆ SCENARIO() [4/6]

SCENARIO ( "CubicalComplex< K3,std::map<> > link tests"  ,
""  [cubical_complex][link] 
)

Definition at line 515 of file testCubicalComplex.cpp.

516 {
517  typedef KhalimskySpaceND<3> KSpace;
518  typedef KSpace::Point Point;
519  typedef KSpace::Cell Cell;
520  typedef KSpace::Integer Integer;
521  typedef std::map<Cell, CubicalCellData> Map;
523 
524  srand( 0 );
525  KSpace K;
526  K.init( Point( 0,0,0 ), Point( 512,512,512 ), true );
527 
528  GIVEN( "A closed cubical complex made of 10x10x10 voxels with their incident cells" ) {
529  CC X( K );
530  CC S( K );
531  for ( Integer x = 0; x < 10; ++x )
532  for ( Integer y = 0; y < 10; ++y )
533  for ( Integer z = 0; z < 10; ++z )
534  {
535  Cell c = K.uSpel( Point( x, y, z ) );
536  if ( x*y*z != 0 )
537  S.insert( K.uPointel( Point( x, y, z ) ) );
538  X.insertCell( c );
539  }
540  X.close();
541  THEN( "It has Euler characteristic 1" ) {
542  REQUIRE( X.euler() == 1 );
543  }
544 
545  WHEN( "Computing the link of its inner pointels without hint" ) {
546  CC link_S_v1 = X.link( S );
547 
548  THEN( "This link is homeomorphic to a sphere and has euler characteristic 2" ) {
549  REQUIRE( link_S_v1.euler() == 2 );
550  }
551  }
552 
553  WHEN( "Computing the link of its inner pointels with full hints" ) {
554  CC link_S_v2 = X.link( S, true, true );
555 
556  THEN( "This link is again homeomorphic to a sphere and has euler characteristic 2" ) {
557  REQUIRE( link_S_v2.euler() == 2 );
558  }
559  }
560  }
561 }

References DGtal::CubicalComplex< TKSpace, TCellContainer >::close(), DGtal::CubicalComplex< TKSpace, TCellContainer >::euler(), GIVEN(), DGtal::KhalimskySpaceND< dim, TInteger >::init(), DGtal::CubicalComplex< TKSpace, TCellContainer >::insert(), DGtal::CubicalComplex< TKSpace, TCellContainer >::insertCell(), K, DGtal::CubicalComplex< TKSpace, TCellContainer >::link(), REQUIRE(), srand(), DGtal::KhalimskySpaceND< dim, TInteger >::uPointel(), and DGtal::KhalimskySpaceND< dim, TInteger >::uSpel().

◆ SCENARIO() [5/6]

SCENARIO ( "CubicalComplex< K3,std::unordered_map<> > collapse tests"  ,
""  [cubical_complex][collapse] 
)

Definition at line 195 of file testCubicalComplex.cpp.

196 {
197  typedef KhalimskySpaceND<3> KSpace;
198  typedef KSpace::Point Point;
199  typedef KSpace::Cell Cell;
200  typedef KSpace::Integer Integer;
201  typedef std::unordered_map<Cell, CubicalCellData> Map;
203  typedef CC::CellMapIterator CellMapIterator;
204 
205  srand( 0 );
206  KSpace K;
207  K.init( Point( 0,0,0 ), Point( 512,512,512 ), true );
208 
209  GIVEN( "A closed cubical complex made of 3x3x3 voxels with their incident cells" ) {
210  CC complex( K );
211  std::vector<Cell> S;
212  for ( Integer x = 0; x < 3; ++x )
213  for ( Integer y = 0; y < 3; ++y )
214  for ( Integer z = 0; z < 3; ++z )
215  {
216  S.push_back( K.uSpel( Point( x, y, z ) ) );
217  complex.insertCell( S.back() );
218  }
219  complex.close();
220  CAPTURE( complex.nbCells( 0 ) );
221  CAPTURE( complex.nbCells( 1 ) );
222  CAPTURE( complex.nbCells( 2 ) );
223  CAPTURE( complex.nbCells( 3 ) );
224 
225  THEN( "It has Euler characteristic 1" ) {
226  REQUIRE( complex.euler() == 1 );
227  }
228 
229  WHEN( "Fixing two vertices of this big cube and collapsing it" ) {
230  CellMapIterator it1 = complex.findCell( 0, K.uCell( Point( 0, 0, 0 ) ) );
231  CellMapIterator it2 = complex.findCell( 0, K.uCell( Point( 4, 4, 4 ) ) );
232  REQUIRE( it1 != complex.end( 0 ) );
233  REQUIRE( it2 != complex.end( 0 ) );
234  it1->second.data |= CC::FIXED;
235  it2->second.data |= CC::FIXED;
237  functions::collapse( complex, S.begin(), S.end(), P, false, true );
238  CAPTURE( complex.nbCells( 0 ) );
239  CAPTURE( complex.nbCells( 1 ) );
240  CAPTURE( complex.nbCells( 2 ) );
241  CAPTURE( complex.nbCells( 3 ) );
242 
243  THEN( "It keeps its topology so its euler characteristic is 1" ) {
244  REQUIRE( complex.euler() == 1 );
245  } AND_THEN( "It has no more 2-cells and 3-cells" ) {
246  REQUIRE( complex.nbCells( 2 ) == 0 );
247  REQUIRE( complex.nbCells( 3 ) == 0 );
248  } AND_THEN( "It has only 0-cells and 1-cells" ) {
249  REQUIRE( complex.nbCells( 0 ) > 0 );
250  REQUIRE( complex.nbCells( 1 ) > 0 );
251  }
252  }
253  }
254 }

References CAPTURE(), DGtal::CubicalComplex< TKSpace, TCellContainer >::close(), DGtal::CubicalComplex< TKSpace, TCellContainer >::end(), DGtal::CubicalComplex< TKSpace, TCellContainer >::euler(), DGtal::CubicalComplex< TKSpace, TCellContainer >::findCell(), GIVEN(), DGtal::KhalimskySpaceND< dim, TInteger >::init(), DGtal::CubicalComplex< TKSpace, TCellContainer >::insertCell(), K, DGtal::CubicalComplex< TKSpace, TCellContainer >::nbCells(), REQUIRE(), srand(), DGtal::KhalimskySpaceND< dim, TInteger >::uCell(), and DGtal::KhalimskySpaceND< dim, TInteger >::uSpel().

◆ SCENARIO() [6/6]

SCENARIO ( "CubicalComplex< K3,std::unordered_map<> > link tests"  ,
""  [cubical_complex][link] 
)

Definition at line 256 of file testCubicalComplex.cpp.

257 {
258  typedef KhalimskySpaceND<3> KSpace;
259  typedef KSpace::Point Point;
260  typedef KSpace::Cell Cell;
261  typedef KSpace::Integer Integer;
262  typedef std::unordered_map<Cell, CubicalCellData> Map;
264 
265  srand( 0 );
266  KSpace K;
267  K.init( Point( 0,0,0 ), Point( 512,512,512 ), true );
268 
269  GIVEN( "A closed cubical complex made of 10x10x10 voxels with their incident cells" ) {
270  CC X( K );
271  CC S( K );
272  for ( Integer x = 0; x < 10; ++x )
273  for ( Integer y = 0; y < 10; ++y )
274  for ( Integer z = 0; z < 10; ++z )
275  {
276  Cell c = K.uSpel( Point( x, y, z ) );
277  if ( x*y*z != 0 )
278  S.insert( K.uPointel( Point( x, y, z ) ) );
279  X.insertCell( c );
280  }
281  X.close();
282  THEN( "It has Euler characteristic 1" ) {
283  REQUIRE( X.euler() == 1 );
284  }
285 
286  WHEN( "Computing the link of its inner pointels without hint" ) {
287  CC link_S_v1 = X.link( S );
288 
289  THEN( "This link is homeomorphic to a sphere and has euler characteristic 2" ) {
290  REQUIRE( link_S_v1.euler() == 2 );
291  }
292  }
293 
294  WHEN( "Computing the link of its inner pointels with full hints" ) {
295  CC link_S_v2 = X.link( S, true, true );
296 
297  THEN( "This link is again homeomorphic to a sphere and has euler characteristic 2" ) {
298  REQUIRE( link_S_v2.euler() == 2 );
299  }
300  }
301  }
302 }

References DGtal::CubicalComplex< TKSpace, TCellContainer >::close(), DGtal::CubicalComplex< TKSpace, TCellContainer >::euler(), GIVEN(), DGtal::KhalimskySpaceND< dim, TInteger >::init(), DGtal::CubicalComplex< TKSpace, TCellContainer >::insert(), DGtal::CubicalComplex< TKSpace, TCellContainer >::insertCell(), K, DGtal::CubicalComplex< TKSpace, TCellContainer >::link(), REQUIRE(), srand(), DGtal::KhalimskySpaceND< dim, TInteger >::uPointel(), and DGtal::KhalimskySpaceND< dim, TInteger >::uSpel().

◆ srand()

srand ( )

Variable Documentation

◆ K

KSpace K
Examples
dec/exampleHeatLaplace.cpp, geometry/curves/estimation/exampleCurvature.cpp, geometry/curves/exampleRationalConvexity.cpp, io/boards/dgtalBoard3D-2-ks.cpp, io/boards/dgtalBoard3DTo2D-KSCell.cpp, io/viewDualSurface.cpp, io/viewers/viewer3D-10-interaction.cpp, io/viewers/viewer3D-11-extension.cpp, io/viewers/viewer3D-4bis-illustrationMode.cpp, topology/3dKSSurfaceExtraction.cpp, topology/area-estimation-with-digital-surface.cpp, topology/area-estimation-with-indexed-digital-surface.cpp, topology/ctopo-1-3d.cpp, topology/ctopo-1.cpp, topology/ctopo-1s-3d.cpp, topology/ctopo-fillContours.cpp, topology/cubical-complex-collapse.cpp, topology/cubical-complex-illustrations.cpp, topology/digitalSetToCubicalComplexes2D.cpp, topology/frontierAndBoundary.cpp, topology/khalimskySpaceScanner.cpp, topology/trackImplicitPolynomialSurfaceToOFF.cpp, and topology/volToOFF.cpp.

Definition at line 62 of file testCubicalComplex.cpp.

Referenced by accuracyTest(), ballGenerator(), centerSurfel(), cmpSCellsIfInside(), cmpUCellsIfInside(), estimatorOnShapeDigitization(), DGtal::Shortcuts< TKSpace >::getCellEmbedder(), DGtal::Shortcuts< TKSpace >::getCellRange(), getComplex(), DGtal::ShortcutsGeometry< TKSpace >::getCTrivialNormalVectors(), DGtal::ShortcutsGeometry< TKSpace >::getFirstPrincipalCurvatures(), DGtal::ShortcutsGeometry< TKSpace >::getFirstPrincipalDirections(), DGtal::ShortcutsGeometry< TKSpace >::getGaussianCurvatures(), DGtal::ShortcutsGeometry< TKSpace >::getIIGaussianCurvatures(), DGtal::ShortcutsGeometry< TKSpace >::getIIMeanCurvatures(), DGtal::ShortcutsGeometry< TKSpace >::getIINormalVectors(), DGtal::ShortcutsGeometry< TKSpace >::getIIPrincipalCurvaturesAndDirections(), DGtal::CellGeometryFunctions< TKSpace, i, N >::getIncidentCellsToPointels(), DGtal::CellGeometryFunctions< TKSpace, 1, 2 >::getIncidentCellsToPointels(), DGtal::CellGeometryFunctions< TKSpace, 1, 3 >::getIncidentCellsToPointels(), DGtal::CellGeometryFunctions< TKSpace, 2, 2 >::getIncidentCellsToPointels(), DGtal::CellGeometryFunctions< TKSpace, 2, 3 >::getIncidentCellsToPointels(), DGtal::CellGeometryFunctions< TKSpace, 3, 3 >::getIncidentCellsToPointels(), DGtal::CellGeometryFunctions< TKSpace, i, N >::getIncidentCellsToPoints(), DGtal::CellGeometryFunctions< TKSpace, 1, 2 >::getIncidentCellsToPoints(), DGtal::CellGeometryFunctions< TKSpace, 1, 3 >::getIncidentCellsToPoints(), DGtal::CellGeometryFunctions< TKSpace, 2, 2 >::getIncidentCellsToPoints(), DGtal::CellGeometryFunctions< TKSpace, 2, 3 >::getIncidentCellsToPoints(), DGtal::CellGeometryFunctions< TKSpace, 3, 3 >::getIncidentCellsToPoints(), DGtal::CellGeometryFunctions< TKSpace, i, N >::getIncidentKPointsToPoints(), DGtal::CellGeometryFunctions< TKSpace, 1, 2 >::getIncidentKPointsToPoints(), DGtal::CellGeometryFunctions< TKSpace, 1, 3 >::getIncidentKPointsToPoints(), DGtal::CellGeometryFunctions< TKSpace, 2, 2 >::getIncidentKPointsToPoints(), DGtal::CellGeometryFunctions< TKSpace, 2, 3 >::getIncidentKPointsToPoints(), DGtal::CellGeometryFunctions< TKSpace, 3, 3 >::getIncidentKPointsToPoints(), DGtal::Shortcuts< TKSpace >::getKSpace(), DGtal::ShortcutsGeometry< TKSpace >::getMeanCurvatures(), DGtal::ShortcutsGeometry< TKSpace >::getNormalVectors(), DGtal::ATSolver2D< TKSpace, TLinearAlgebra >::getOutputScalarFieldV0(), DGtal::Shortcuts< TKSpace >::getPointelRange(), DGtal::ShortcutsGeometry< TKSpace >::getPositions(), DGtal::Shortcuts< TKSpace >::getPrimalCells(), DGtal::Shortcuts< TKSpace >::getPrimalVertices(), DGtal::ShortcutsGeometry< TKSpace >::getPrincipalCurvaturesAndDirections(), DGtal::Shortcuts< TKSpace >::getSCellEmbedder(), DGtal::ShortcutsGeometry< TKSpace >::getSecondPrincipalCurvatures(), DGtal::ShortcutsGeometry< TKSpace >::getSecondPrincipalDirections(), DGtal::ShortcutsGeometry< TKSpace >::getTrivialNormalVectors(), GIVEN(), main(), DGtal::Shortcuts< TKSpace >::makeDigitalSurface(), DGtal::Shortcuts< TKSpace >::makeIdxDigitalSurface(), DGtal::Shortcuts< TKSpace >::makeLightDigitalSurface(), DGtal::Shortcuts< TKSpace >::makeLightDigitalSurfaces(), DGtal::Shortcuts< TKSpace >::makePolygonalSurface(), DGtal::Shortcuts< TKSpace >::makeTriangulatedSurface(), Object3D(), DGtal::Shortcuts< TKSpace >::CellWriter::operator()(), DGtal::Shortcuts< TKSpace >::CellReader::operator()(), DGtal::Shortcuts< TKSpace >::SCellWriter::operator()(), DGtal::Shortcuts< TKSpace >::SCellReader::operator()(), DGtal::Shortcuts< TKSpace >::outputCellMapAsCSV(), DGtal::Shortcuts< TKSpace >::outputDualDigitalSurfaceAsObj(), DGtal::Shortcuts< TKSpace >::outputSCellMapAsCSV(), DGtal::Shortcuts< TKSpace >::outputSurfelsAsObj(), DGtal::Shortcuts< TKSpace >::saveOBJ(), DGtal::Shortcuts< TKSpace >::saveOFF(), SCENARIO(), TEST_CASE(), testBallQuad(), testCellDrawOnBoard(), testCellularGridSpaceNDCoFaces(), testCellularGridSpaceNDFaces(), testCombinatorialSurface(), testCompareEstimator(), testComputeInterior(), testCube(), testCurvature2d(), testDigitalSetBoundary(), testDigitalSurface(), testDigitalSurfaceBoostGraphInterface(), testDigitization(), testDirectIncidence(), testEmbedder(), testEstimatorCache(), testExplicitDigitalSurface(), testFaces(), testFindABel(), testFitting(), testGaussianCurvature3d(), DGtal::testImplicitDigitalSurface(), testImplicitDigitalSurface(), testIncidence(), testLightExplicitDigitalSurface(), DGtal::testLightImplicitDigitalSurface(), testLightImplicitDigitalSurface(), testLocalEstimatorFromFunctorAdapter(), testMeanCurvature3d(), testNeighborhood(), testObjectGraph(), testOrderingDigitalSurfaceFacesAroundVertex(), testPrincipalCurvatures3d(), testRaySurface(), testScan(), testSurfelAdjacency(), testTrueLocalEstimatorOnShapeDigitization(), testUmbrellaComputer(), and DGtal::ATSolver2D< TKSpace, TLinearAlgebra >::updateSmallestEpsilonMap().

◆ NBCELLS

const int NBCELLS = 1000
static

Definition at line 50 of file testCubicalComplex.cpp.

Referenced by GIVEN().

nbFaces
std::vector< int > nbFaces(6, 0)
DGtal::CubicalComplex::CellMapIterator
CellMap::iterator CellMapIterator
Iterator for visiting type CellMap.
Definition: CubicalComplex.h:253
boost::Container
Go to http://www.sgi.com/tech/stl/Container.html.
Definition: Boost.dox:104
DGtal::KhalimskySpaceND::uCell
Cell uCell(const PreCell &c) const
From an unsigned cell, returns an unsigned cell lying into this Khalismky space.
DGtal::HyperRectDomain< Space >
DGtal::CubicalComplex::euler
Integer euler() const
DGtal::KhalimskySpaceND::uSpel
Cell uSpel(Point p) const
From the digital coordinates of a point in Zn, builds the corresponding spel (cell of maximal dimensi...
DGtal::KhalimskySpaceND::init
bool init(const Point &lower, const Point &upper, bool isClosed)
Specifies the upper and lower bounds for the maximal cells in this space.
boost::ForwardIterator
Go to http://www.sgi.com/tech/stl/ForwardIterator.html.
Definition: Boost.dox:40
CellMapConstIterator
CC::CellMapConstIterator CellMapConstIterator
Definition: testCubicalComplex.cpp:59
srand
srand(0)
K
KSpace K
Definition: testCubicalComplex.cpp:62
REQUIRE
REQUIRE(domain.isInside(aPoint))
DGtal::SpaceND
Definition: SpaceND.h:95
Map
std::unordered_map< Cell, CubicalCellData > Map
Definition: testCubicalComplex.cpp:57
KSpace
Z3i::KSpace KSpace
Definition: testArithmeticalDSSComputerOnSurfels.cpp:48
CAPTURE
CAPTURE(thicknessHV)
nbFaces2
std::vector< int > nbFaces2(6, 0)
NBCELLS
static const int NBCELLS
Definition: testCubicalComplex.cpp:50
Domain
HyperRectDomain< Space > Domain
Definition: testSimpleRandomAccessRangeFromPoint.cpp:44
DGtal::CubicalComplex::link
CubicalComplex link(const CubicalComplex &S, bool hintClosed=false, bool hintOpen=false) const
nbCoFaces
std::vector< int > nbCoFaces(4, 0)
DGtal::CubicalComplex::Cells
KSpace::Cells Cells
Type for a sequence of cells in the space.
Definition: CubicalComplex.h:246
CC
CubicalComplex< KSpace, Map > CC
Definition: testCubicalComplex.cpp:58
Integer
Point::Coordinate Integer
Definition: examplePlaneProbingParallelepipedEstimator.cpp:44
nbBdry
std::vector< int > nbBdry(10, 0)
domain
Domain domain
Definition: testProjection.cpp:88
DGtal::PointVector< dim, Integer >
Point
KSpace::Point Point
Definition: testCubicalComplex.cpp:53
DGtal::CubicalComplex::boundary
CubicalComplex boundary(bool hintClosed=false) const
Space
SpaceND< 2 > Space
Definition: testSimpleRandomAccessRangeFromPoint.cpp:42
Cell
KSpace::Cell Cell
Definition: testCubicalComplex.cpp:56
DGtal::KhalimskySpaceND::Integer
TInteger Integer
Arithmetic ring induced by (+,-,*) and Integer numbers.
Definition: KhalimskySpaceND.h:404
GIVEN
GIVEN("A cubical complex with random 3-cells")
Definition: testCubicalComplex.cpp:70
DGtal::KhalimskySpaceND::uPointel
Cell uPointel(Point p) const
From the digital coordinates of a point in Zn, builds the corresponding pointel (cell of dimension 0)...
DGtal::CubicalComplex
Aim: This class represents an arbitrary cubical complex living in some Khalimsky space....
Definition: CubicalComplex.h:84
Point
MyPointD Point
Definition: testClone2.cpp:383
nbBdry2
std::vector< int > nbBdry2(10, 0)
DGtal::CubicalComplex::DefaultCellMapIteratorPriority
Definition: CubicalComplex.h:282
DGtal::KhalimskyCell< dim, Integer >
DGtal::KhalimskySpaceND
Aim: This class is a model of CCellularGridSpaceND. It represents the cubical grid as a cell complex,...
Definition: KhalimskySpaceND.h:64