DGtal  1.4.2
testFullConvexity.cpp File Reference
#include <iostream>
#include <vector>
#include <algorithm>
#include "DGtal/base/Common.h"
#include "DGtal/kernel/SpaceND.h"
#include "DGtal/kernel/domains/HyperRectDomain.h"
#include "DGtal/kernel/sets/DigitalSetBySTLSet.h"
#include "DGtal/topology/KhalimskySpaceND.h"
#include "DGtal/geometry/volumes/CellGeometry.h"
#include "DGtal/geometry/volumes/DigitalConvexity.h"
#include "DGtal/shapes/Shapes.h"
#include "DGtalCatch.h"
Include dependency graph for testFullConvexity.cpp:

Go to the source code of this file.

Functions

 SCENARIO ("DigitalConvexity< Z2 > full convexity tests", "[digital_convexity][2d][full_convexity]")
 
 SCENARIO ("FullConvexity< Z3 > full convexity tests", "[full_convexity][3d]")
 
 SCENARIO ("DigitalConvexity< Z2 > ball tests", "[digital_convexity][2d]")
 
 SCENARIO ("DigitalConvexity< Z3 > ball tests", "[digital_convexity][3d]")
 
 SCENARIO ("DigitalConvexity< Z4 > ball tests", "[digital_convexity][4d]")
 

Detailed Description

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Author
Jacques-Olivier Lachaud (jacqu.nosp@m.es-o.nosp@m.livie.nosp@m.r.la.nosp@m.chaud.nosp@m.@uni.nosp@m.v-sav.nosp@m.oie..nosp@m.fr ) Laboratory of Mathematics (CNRS, UMR 5127), University of Savoie, France
Date
2020/02/01

Functions for testing full convexity.

This file is part of the DGtal library.

Definition in file testFullConvexity.cpp.

Function Documentation

◆ SCENARIO() [1/5]

SCENARIO ( "DigitalConvexity< Z2 > ball tests"  ,
""  [digital_convexity][2d] 
)

Definition at line 99 of file testFullConvexity.cpp.

100 {
101  GIVEN( "Given a 2D digital ball of radius 5 " ) {
103  typedef KSpace::Point Point;
104  typedef KSpace::Space Space;
105  typedef DigitalConvexity< KSpace > DConvexity;
108 
109  Point lo = Point::diagonal( -7 );
110  Point hi = Point::diagonal( 7 );
111  Point c = Point::zero;
112  Domain domain( lo, hi );
113  DConvexity dconv ( lo, hi );
114  DigitalSet ball ( domain );
115  Shapes< Domain >::addNorm2Ball( ball, c, 5 );
116  std::vector<Point> V( ball.begin(), ball.end() );
117  bool cvx0 = dconv.is0Convex( V );
118  bool fcvx = dconv.isFullyConvex( V );
119  THEN( "It is a 0-convex and fully convex set by morphological characterization" ) {
120  REQUIRE( cvx0 );
121  REQUIRE( fcvx );
122  }
123  }
124 }
bool isFullyConvex(const PointRange &X, bool convex0=false) const
bool is0Convex(const PointRange &X) const
Aim: A wrapper class around a STL associative container for storing sets of digital points within som...
Aim: A container class for storing sets of digital points within some given domain.
Aim: This class is a model of CCellularGridSpaceND. It represents the cubical grid as a cell complex,...
Aim: A utility class for constructing different shapes (balls, diamonds, and others).
MyPointD Point
Definition: testClone2.cpp:383
GIVEN("A cubical complex with random 3-cells")
Domain domain
HyperRectDomain< Space > Domain
REQUIRE(domain.isInside(aPoint))
Z2i::DigitalSet DigitalSet

References DGtal::DigitalSetByAssociativeContainer< TDomain, TContainer >::begin(), domain, DGtal::DigitalSetByAssociativeContainer< TDomain, TContainer >::end(), GIVEN(), DGtal::DigitalConvexity< TKSpace >::is0Convex(), DGtal::DigitalConvexity< TKSpace >::isFullyConvex(), and REQUIRE().

◆ SCENARIO() [2/5]

SCENARIO ( "DigitalConvexity< Z2 > full convexity tests"  ,
""  [digital_convexity][2d][full_convexity] 
)

Definition at line 53 of file testFullConvexity.cpp.

54 {
56  typedef KSpace::Point Point;
57  typedef DigitalConvexity< KSpace > DConvexity;
58 
59  DConvexity dconv( Point( -5, -5 ), Point( 10, 10 ) );
60 
61  std::vector<Point> V1 = { Point(0,0), Point(-1,0), Point(1,0), Point(0,1) };
62  REQUIRE( dconv.isFullyConvex( V1 ) );
63  std::vector<Point> V2 = { Point(-1,0), Point(1,0), Point(0,1) };
64  REQUIRE( ! dconv.isFullyConvex( V2 ) );
65  std::vector<Point> V3 = { Point(0,0), Point(-1,0), Point(1,0) };
66  REQUIRE( dconv.isFullyConvex( V3 ) );
67  std::vector<Point> V4 = { Point(0,0), Point(-1,0), Point(1,0), Point(0,1),
68  Point(0,-1) };
69  REQUIRE( dconv.isFullyConvex( V4 ) );
70  std::vector<Point> V5 = { Point(-1,0), Point(1,0), Point(0,1), Point(0,-1) };
71  REQUIRE( ! dconv.isFullyConvex( V5 ) );
72 }

References DGtal::DigitalConvexity< TKSpace >::isFullyConvex(), and REQUIRE().

◆ SCENARIO() [3/5]

SCENARIO ( "DigitalConvexity< Z3 > ball tests"  ,
""  [digital_convexity][3d] 
)

Definition at line 126 of file testFullConvexity.cpp.

127 {
128  GIVEN( "Given a 3D digital ball of radius 5 " ) {
130  typedef KSpace::Point Point;
131  typedef KSpace::Space Space;
132  typedef DigitalConvexity< KSpace > DConvexity;
135 
136  Point lo = Point::diagonal( -7 );
137  Point hi = Point::diagonal( 7 );
138  Point c = Point::zero;
139  Domain domain( lo, hi );
140  DConvexity dconv ( lo, hi );
141  DigitalSet ball ( domain );
142  Shapes< Domain >::addNorm2Ball( ball, c, 5 );
143  std::vector<Point> V( ball.begin(), ball.end() );
144  bool cvx0 = dconv.is0Convex( V );
145  bool fcvx = dconv.isFullyConvex( V );
146  THEN( "It is a 0-convex and fully convex set by morphological characterization" ) {
147  REQUIRE( cvx0 );
148  REQUIRE( fcvx );
149  }
150  }
151 }

References DGtal::DigitalSetByAssociativeContainer< TDomain, TContainer >::begin(), domain, DGtal::DigitalSetByAssociativeContainer< TDomain, TContainer >::end(), GIVEN(), DGtal::DigitalConvexity< TKSpace >::is0Convex(), DGtal::DigitalConvexity< TKSpace >::isFullyConvex(), and REQUIRE().

◆ SCENARIO() [4/5]

SCENARIO ( "DigitalConvexity< Z4 > ball tests"  ,
""  [digital_convexity][4d] 
)

[nD-full-convexity]

[nD-full-convexity]

Definition at line 153 of file testFullConvexity.cpp.

154 {
155  GIVEN( "Given a 4D digital ball of radius 5 " ) {
158  typedef KSpace::Point Point;
159  typedef KSpace::Space Space;
160  typedef DigitalConvexity< KSpace > DConvexity;
163 
164  Point lo = Point::diagonal( -7 );
165  Point hi = Point::diagonal( 7 );
166  Point c = Point::zero;
167  Domain domain( lo, hi );
168  DConvexity dconv ( lo, hi );
169  DigitalSet ball ( domain );
170  Shapes< Domain >::addNorm2Ball( ball, c, 5 );
171  std::vector<Point> V( ball.begin(), ball.end() );
172  bool cvx0 = dconv.is0Convex( V ); // checks digital 0-convexity
173  bool fcvx = dconv.isFullyConvex( V ); // checks full convexity
175  THEN( "It is a 0-convex and fully convex set by morphological characterization" ) {
176  REQUIRE( cvx0 );
177  REQUIRE( fcvx );
178  }
179  }
180 }

References DGtal::DigitalSetByAssociativeContainer< TDomain, TContainer >::begin(), domain, DGtal::DigitalSetByAssociativeContainer< TDomain, TContainer >::end(), GIVEN(), DGtal::DigitalConvexity< TKSpace >::is0Convex(), DGtal::DigitalConvexity< TKSpace >::isFullyConvex(), and REQUIRE().

◆ SCENARIO() [5/5]

SCENARIO ( "FullConvexity< Z3 > full convexity tests"  ,
""  [full_convexity][3d] 
)

Definition at line 74 of file testFullConvexity.cpp.

75 {
77  typedef KSpace::Point Point;
78  typedef DigitalConvexity< KSpace > DConvexity;
79 
80  DConvexity dconv( Point( -5, -5, -5 ), Point( 10, 10, 10 ) );
81  Point a( 0, 2, 3 );
82  Point b( 3, 1, 0 );
83  Point c( 2, 0, 1 );
84  Point d( 2, 1, 2 );
85  std::vector< Point > X;
86  REQUIRE( dconv.isSimplexFullDimensional( { a, b, c, d } ) );
87  auto tetra= dconv.makeSimplex( { a, b, c, d } );
88  tetra.getPoints( X );
89  bool cvx0 = dconv.isKConvex( tetra, 0 );
90  bool cvx1 = dconv.isKConvex( tetra, 1 );
91  bool cvx2 = dconv.isKConvex( tetra, 2 );
92  bool cvx3 = dconv.isKConvex( tetra, 3 );
93  bool cvxf = dconv.isFullyConvex( tetra );
94  bool cvxg = dconv.isFullyConvex( X, false );
95  REQUIRE( cvxf == cvxg );
96  REQUIRE( ( cvx0 && cvx1 && cvx2 && cvx3 ) == cvxf );
97 }
void getPoints(std::vector< Point > &pts) const
bool isKConvex(const LatticePolytope &P, const Dimension k) const
static bool isSimplexFullDimensional(PointIterator itB, PointIterator itE)
static LatticePolytope makeSimplex(PointIterator itB, PointIterator itE)

References DGtal::BoundedLatticePolytope< TSpace >::getPoints(), DGtal::DigitalConvexity< TKSpace >::isFullyConvex(), DGtal::DigitalConvexity< TKSpace >::isKConvex(), DGtal::DigitalConvexity< TKSpace >::isSimplexFullDimensional(), DGtal::DigitalConvexity< TKSpace >::makeSimplex(), and REQUIRE().